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Carbon S'rores on and

Motivation: Soil Carbon Cycle —

e Soils store vast amounts of carbon 800 GT

o Potential to remove CO2 from the atmosphere N Plant biomass
: 66 550 GT

e However, the soil carbon cycle is poorly understood
e.g. how long does carbon stay in the soil? il carbon
2568 on prior kn ) | 1800 GT

e Based on prior knowledge, scientists develop
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Many unobserved parameters (which vary across space)

Figure sources: (1) University of Wisconsin, https://cropsandsoils.extension.wisc.edu/articles/agricultural-carbon-credits-an-overview-for-farmers-and-landowners/
(2) Luo & Smith, Land Carbon Cycle Modeling textbook, 2nd ed.


https://cropsandsoils.extension.wisc.edu/articles/agricultural-carbon-credits-an-overview-for-farmers-and-landowners/

Blackbox-Hybrid approaches (e.g. BINN)

e Prior work: embed differentiable process-based model inside neural network [1]

Predicted SOC ?

Supervised Loss:
SmoothL1 (Y, Y)

MLP takes environmental inputs at each location, and predicts latent parameters
Process-based model uses these parameters to simulate soil carbon flows and amounts
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[11 Xu*, Fan*, Tao*, et al. “Biogeochemistry-Informed Neural Network (BINN) for Improving Accuracy of Model Prediction and Scientific Understanding of Soil Organic
Carbon” In review (Geoscientific Model Development). https://arxiv.org/abs/2502.00672
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Neural additive models + KANSs

e Kolmogorov Arnold Network (KAN) is an alternative to MLPs that is easier to interpret
(sometimes)
o Learn activation function on edges, then add together at nodes

e Start with an additive model Rb Biogeochemical
Parameters (latent)

/] N

./ t% Environmental

Here, the model estimates sw pot dsw pot Inputs (observed)
Rb = f (sw_pot) + f (dsw_pot) - -

f,, f, are learned from data; can be any function from 1 input — 1 output

Interpretation: As sw_pot increases, Rb increases. As dsw_pot increases,
Rb decreases. Assumes contributions from each input are additive.



Example of 2-layer KAN

R Biogeochemical

Parameters (latent)

M

INTERMEDIATE

N
O/ / & Environmental

- — a Inputs
(observed)

Here, the model estimates:
INTERMEDIATE = f (sw_pot) + f (dsw_pot)
Rb = f3(INTERMEDIATE)

To be interpretable, network
should be:

e Sparse: only a small
number of connections
matter (relative to all
possible connections)

e Smooth splines:
relationships should be as
“linear as possible” while
fitting the data.

We design regularization losses
to encourage these



Scientifically-Interpretable Reasoning Network (SciIReN)

Supervised Loss:
SmoothL1 (?, Y)
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Hard-Sigmoid Constraint

e We often want to constrain parameters to be within a given prior range.

e In BINN, we did this with a sigmoid, but this adds nonlinearity, making functional
relationships hard to interpret.

e Now, we use a hardsigmoid which clamps the model's prediction to be within the
prior range. Linear within the prior range

e However, since the derivative is 0 outside the prior range, we add another loss to
push predictions out of this flat area

Param loss  Loss

Input




Sparsity Loss: Details

e Compute edge importance scores: how much
each edge contributes to variation in the final
outputs

o Use a“backpropagation-like” algorithm [1]
e Normalize — probability distribution over edges
e This should have low entropy: a small number
of connections are important, others don't
matter
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Define Ej ; ; as the mean absolute deviation') of the out-
puts of the (I,7 — j) edge (the edge from layer [ — 1, node
i to layer [, node j):

E; ;i j = AbsDev(¢y i j(zi—1,)) ¢))

Note that the mean absolute deviation is taken over the
batch dimension.

Let N; ; be the mean absolute deviation of the outputs of
node (1, 7):

ni—1
N, ; = AbsDey (Z ¢l,i,j(l'[_1,i)> )

i=1
We now compute node and edge scores iteratively. Start with
last layer, and set output node scores Ay, ; to be the variance

of output i. Then compute scores as follows for each layer
l= L

Bi_1,i; = A, 3

ng
A=) B @

Intuitively, A; ; represents how much neuron (1,7) con-
tributes to the variance in all final outputs, and B ; ; is how
much of that variance is contributed by the output of edge
(1,2 — j). For the first equation, we first look at the contri-
bution of neuron (I, j) towards the final variances, and then
split it across the input edges according to the fraction of
this neuron’s variance contributed by each incoming edge
(E‘ ==Lt3) For the second equation, we compute each neu-

ron s “contribution towards the final variances by summing
over the contributions via each outgoing edge.

[1] Liu et al. (2024). Kan 2.0: Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205.




Smoothness Loss

e Functions on each connection can be any curve (here: parameterized by B-splines)
e However, we add a “smoothness loss” (2nd derivative penalty) to encourage the
curves to be close to linear if possible. Still allows for nonlinearity when needed

If ¢, ... cq are B-spline coefficients, the penalty is

G-2
Lsmooth o Z((ci+2 = C'H-l) - (ci+1 - Ci))2
g=1
Rb Rb
L/ N A N
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Some unnecessary complexity in the curves As linear as possible



Results: Ecosystem Respiration

e Latentvariable “Rb” only depends on first two features
e SclReN learned this correctly (sparsity/linearity); Blackbox-Hybrid did not. See paper for numbers
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Results: Soil Carbon Cycle

Generated synthetic dataset with known functional relationships (right)

BINN (Blackbox-Hybrid) did not infer correct functional relationships (left), but ScIReN did (center).

Blackbox-Hybrid prediction g¢|ReN prediction (KL: 0.144)

(KL: 1.196)
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On real data, SclReN achieves the same accuracy as black-box methods while being
fully-interpretable and transparent. No need to sacrifice accuracy for interpretability!
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Quantitative results

Synthetic labels: ScIReN is by far the best at recovering latent

parameters and functional relationships

Method R? (observed, )  R? (latent,7) KL, functional relationships (/)
Pure-NN 0.933 +=0.015 N/A N/A
Blackbox-Hybrid, nonlinear constraint 0.996 =0.003  0.226 + 0.800 1.312 £ 0.170
Blackbox-Hybrid, linear constraint 0.995 = 0.003 0.721 4+ 0.226 1.082 + 0.258
Linear-Hybrid, hardsigmoid 0.973 =0.013 0.087 +£1.014 1.727 £ 0.322
ScIReN, linear constraint (1-layer KAN)  0.999 £ 0.002  0.989 + 0.020 0.080 + 0.042

Real labels: With ScIReN, we get interpretability without

sacrificing accuracy. While we don’t have ground-truth for latent
parameters/relationships, they seem to match domain knowledge.

Method R%(1) MAE () Pearson correlation (1)
Pure-NN 0.552 £0.173 4609.3 + 356.8 0.780 + 0.053
Blackbox-Hybrid, nonlinear constraint 0.584 +0.082 4726.2 +727.3 0.776 = 0.048
Blackbox-Hybrid, linear constraint 0.589 + 0.070 4849.7 £+ 650.3 0.774 £+ 0.040
Linear-Hybrid, hardsigmoid 0.552 £0.082 4984.8 +771.6 0.761 £+ 0.046
ScIReN, linear constraint (1-layer KAN) 0.582 + 0.080 4708.2 + 673.1 0.769 + 0.049
ScIReN, linear constraint (2-layer KAN) 0.571 £ 0.094 4707.3 + 826.3 0.765 + 0.052




Qualitative feedback from soil scientists

Biogeochemical
Processes
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Still preliminary, but qualitatively these relationships seem consistent with ecological knowledge

“We found a positive exponential-like relationship between mean annual temperature (BIO1) and diffusion rate
(diffus) in vertical transport, suggesting that higher temperatures will accelerate the vertical movement of organic
carbon. Such a relationship agrees well with the conventional understanding that higher temperatures provide
more kinetic energy to support faster diffusion (Taylor 1938).

Meanwhile, we found spreading negative relationships between fresh plant carbon input (NPP) and parameters
related to carbon transfer efficiencies (f_ij) and SOC substrate baseline turnover times (tau_i). These emerging
functional relationships support a positive long-term priming effect at the continental scale, where higher rates of
plant carbon input will likely lead to accelerated SOC decomposition (lower tau_i) and eventually less SOC accrual
(lower f_ij) (Kuzyakov 2010)
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Conclusion

We propose SclReN, a method that
e Respects existing scientific knowledge, provided by any process-based model
e Reveals new functional relationships between environmental inputs and
unobserved biogeochemical processes
The system is trainable end-to-end, and every part of the model is fully transparent.

Potential future directions:
e Apply ScIReN to new domains
e Make ScIReN easier to train
e Understand uncertainty of revealed functional relationships
e Improve spatial generalization, e.g. geographic positional embeddings or domain
adaptation



Thank you!

Paper link: https://arxiv.org/abs/2506.14054
(or Google “Scientifically-Interpretable Reasoning Network”)
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