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Motivation

models that simulate how carbon moves through the soil
o Many unknown parameters that vary across space (
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Approach

ldea: embed differentiable process-based model inside neural network [3]

We propose Scientifically-Interpretable Reasoning Network (ScIReN), a
transparent model that respects existing knowledge and reveals new insights

I
e Soils store vast amounts of carbon (more than atmosphere+plants) [1] .
o Potential to remove CO2 from the atmosphere, mitigate climate change ' e Encoder: Given environmental features, predict latent parameters
e However, the soil carbon cycle remains poorly understood, leading to e Process-based “decoder”: given predicted parameters, uses scientific
major uncertainties in climate projections [2] | knowledge to simulate carbon flows and predict carbon amount in each pool
I . .
o e.g. How much carbon is currently stored in the soil? How long doesit ' e However, the encoder is not interpretable
stay there? | o Scientists want functional relationships between inputs and parameters
I
e Scientists encode their scientific understanding into process-based ! o ldea: use sparse Kolmogorov-Arnold network [4][5]
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SclReN Overview
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Fully-Interpretable Relationships
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Functional Relationships

e Each curve reveals how changing one environmental
variable will affect a biogeochemical process

e Each outputis the sum of interpretable
contributions from each input, e.g.
o output1 = (input1)? + exp(input6) + ...

e How accurate are these? Prescribed functional
relationships between 10 inputs and 4 most
sensitive biogeochemical parameters (right)

Blackbox-Hybrid prediction g¢lReN prediction (KL: 0.144) Ground-Truth
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Going deeper

If we need non-additive feature interactions, try
multi-layer KANs! Example:
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Smoothness Loss: encourage relationships to
be linear. If ¢y, ..., cg are B-spline coefficients,

penalize 2nd difference:
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Sparsity loss: focus on a few key connections.
Compute edge importances e; (how much edge
contributes to variation in outputs)

Normalize + penalize entropy: Z e; loge,

(KL: 1.196)
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e BINN (left) does not reveal functional relationships.
If we apply a post-hoc interpretation method, it did
not even implicitly learn the correct relationships.

e SclReN (center) revealed the relationships
accurately. (Also worked on a different domain)

Synthetic labels: ScIReN is by far the best at recovering
latent parameters and functional relationships, and
extrapolating out-of-distribution (see paper for more)
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Method R? (observed, 1)  R? (latent,?) KL, functional relationships (/)
Pure-NN 0.933 + 0.015 N/A N/A
Blackbox-Hybrid, nonlinear constraint 0.996 + 0.003 0.226 £+ 0.800 1.312 + 0.170
Blackbox-Hybrid, linear constraint 0.995 + 0.003 0.721 £+ 0.226 1.082 + 0.258
Linear-Hybrid, hardsigmoid 0.973 = 0.013 0.087 £1.014 1127 +0.322
ScIReN, linear constraint (1-layer KAN)  0.999 +£0.002  0.989 + 0.020 0.080 + 0.042

Real labels: With ScIReN, we get interpretability without
sacrificing accuracy. While we don't have ground-truth for

latent params/relationships, they match domain knowledge.

Method R2%(1) MAE ({) Pearson correlation (1)
Pure-NN 0.552 +0.173 4609.3 + 356.8 0.780 + 0.053
Blackbox-Hybrid, nonlinear constraint 0.584 +0.082 4726.2 +727.3 0.776 = 0.048
Blackbox-Hybrid, linear constraint 0.589 + 0.070 4849.7 + 650.3 0.774 + 0.040
Linear-Hybrid, hardsigmoid 0.552 +£0.082 4984.8 +771.6 0.761 £+ 0.046
ScIReN, linear constraint (1-layer KAN) 0.582 £ 0.080 4708.2 + 673.1 0.769 + 0.049
ScIReN, linear constraint (2-layer KAN) 0.571 £0.094 4707.3 £ 826.3 0.765 + 0.052

We propose SclReN, a method that

e Respects existing scientific knowledge,
provided by any process-based model

e Reveals new functional relationships
between environmental inputs and
unobserved biogeochemical processes

The system is trainable end-to-end; every

part of the model is fully transparent.

Potential future directions:

e Apply ScIReN to new domains

e Experimentally validate the functional
relationships learned by the model

e Make ScIReN easier to train

e Understand uncertainty of revealed
functional relationships

e Improve spatial generalization, e.g.
geographic positional embeddings or
domain adaptation
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