

Scientifically-Interpretable Reasoning Network (SciReN): Uncovering Hidden Relationships in the Soil Carbon Cycle

Joshua Fan^{1*}, Haodi Xu^{2*}, Feng Tao^{3,4*}, Md Nasim¹, Marc Grimson¹, Yiqi Luo², Carla P. Gomes¹

¹Cornell University, Computer Science ²Cornell University, Soil & Crop Science ³Cornell University, Ecology and Evolutionary Biology

⁴Pennsylvania State University, Informatics and Intelligent Systems & Institute of Energy and the Environment *Equal contribution

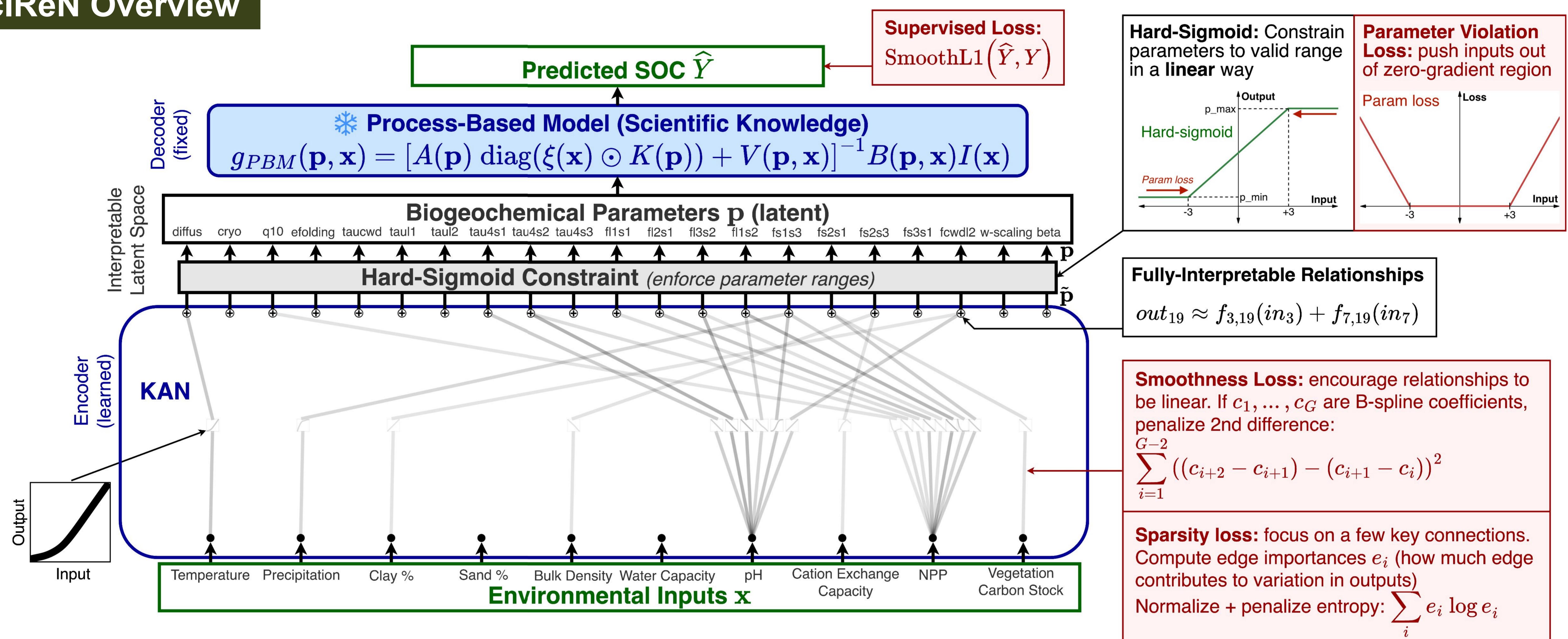
Motivation

- Soils store vast amounts of carbon (more than atmosphere+plants) [1]
 - Potential to remove CO₂ from the atmosphere, mitigate climate change
- However, the **soil carbon cycle** remains poorly understood, leading to major uncertainties in climate projections [2]
 - e.g. How much carbon is currently stored in the soil? How long does it stay there?
- Scientists encode their scientific understanding into **process-based models** that simulate how carbon moves through the soil
 - Many unknown parameters that vary across space :

Approach

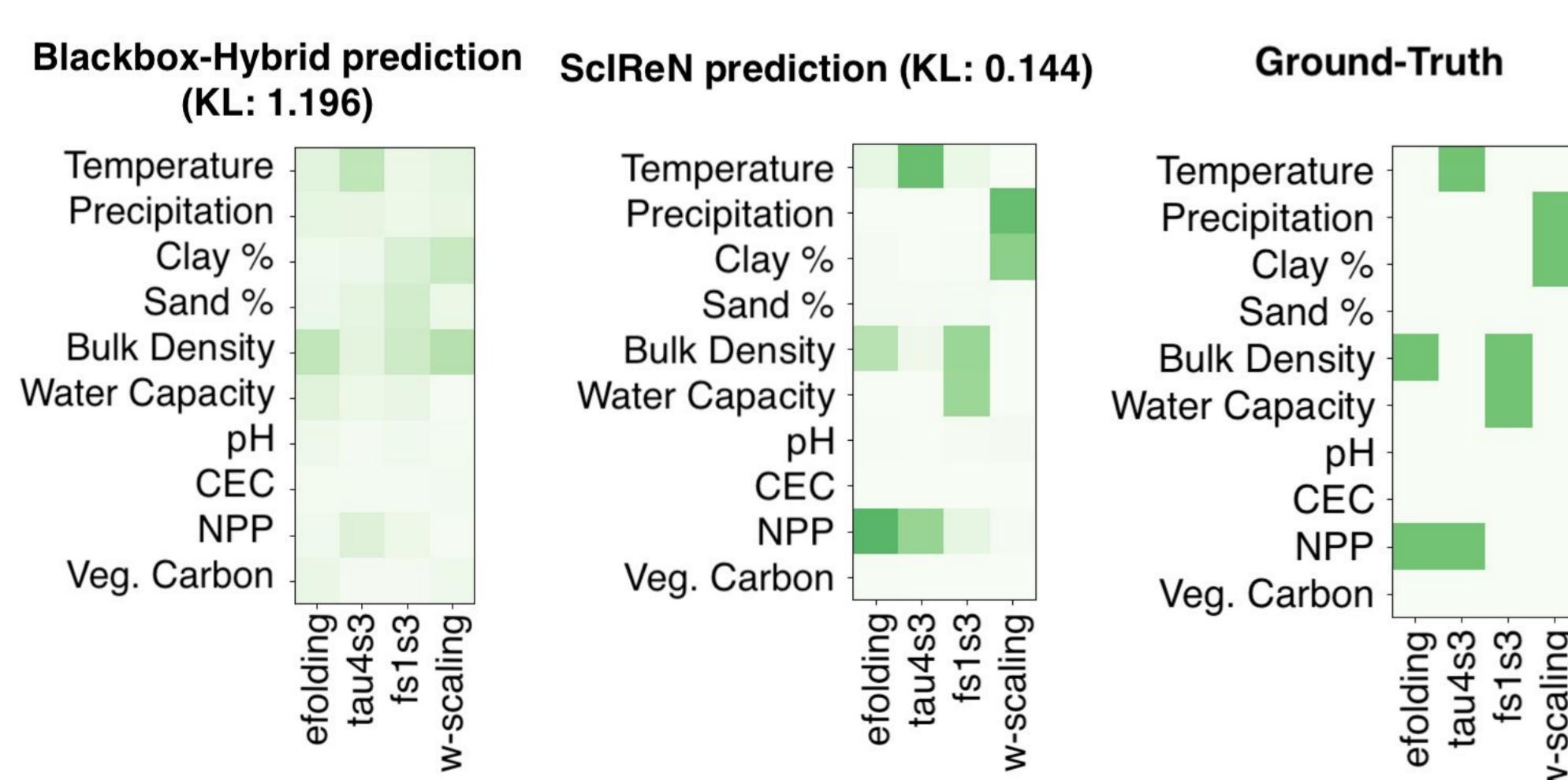
- Idea: embed differentiable process-based model inside neural network [3]
- Encoder:** Given environmental features, predict latent parameters
- Process-based “decoder”:** given predicted parameters, uses **scientific knowledge** to simulate carbon flows and predict carbon amount in each pool
- However, the encoder is **not interpretable**
 - Scientists want **functional relationships** between inputs and parameters
 - Idea: use sparse Kolmogorov-Arnold network [4][5]
- We propose **Scientifically-Interpretable Reasoning Network (SciReN)**, a transparent model that **respects existing knowledge** and **reveals new insights**

SciReN Overview



Functional Relationships

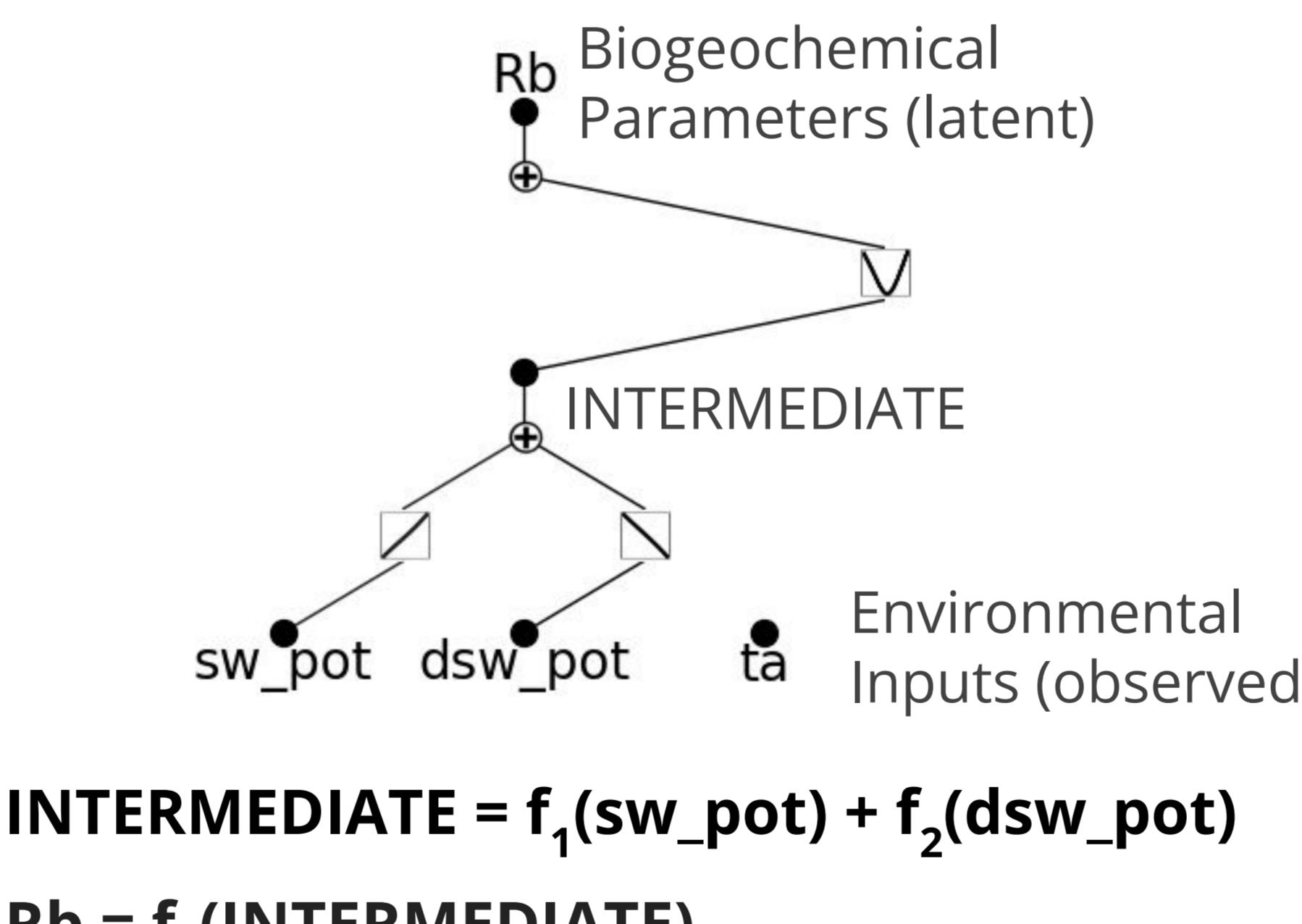
- Each curve reveals how changing one environmental variable will affect a biogeochemical process
- Each output is the sum of interpretable contributions from each input, e.g.
 - output1 = (input1)² + exp(input6) + ...**
- How accurate are these? Prescribed functional relationships between 10 inputs and 4 most sensitive biogeochemical parameters (right)



- BINN (left) does not reveal functional relationships. If we apply a post-hoc interpretation method, it did not even implicitly learn the correct relationships.
- SciReN (center) revealed the relationships accurately. **(Also worked on a different domain)**

Going deeper

If we need non-additive feature interactions, try multi-layer KANs! Example:



Results

Synthetic labels: SciReN is by far the best at recovering latent parameters and functional relationships, and extrapolating out-of-distribution (see paper for more)

Method	R^2 (observed, \uparrow)	R^2 (latent, \uparrow)	KL, functional relationships (\downarrow)
Pure-NN	0.933 \pm 0.015	N/A	N/A
Blackbox-Hybrid, nonlinear constraint	0.996 \pm 0.003	0.226 \pm 0.800	1.312 \pm 0.170
Blackbox-Hybrid, linear constraint	0.995 \pm 0.003	0.721 \pm 0.226	1.082 \pm 0.258
Linear-Hybrid, hardsigmoid	0.973 \pm 0.013	0.087 \pm 0.014	1.727 \pm 0.322
SciReN, linear constraint (1-layer KAN)	0.999 \pm 0.002	0.989 \pm 0.020	0.080 \pm 0.042

Real labels: With SciReN, we get **interpretability without sacrificing accuracy**. While we don't have ground-truth for latent params/relationships, they match domain knowledge.

Method	$R^2(\uparrow)$	MAE (\downarrow)	Pearson correlation (\uparrow)
Pure-NN	0.552 \pm 0.173	4609.3 \pm 356.8	0.780 \pm 0.053
Blackbox-Hybrid, nonlinear constraint	0.584 \pm 0.082	4726.2 \pm 727.3	0.776 \pm 0.048
Blackbox-Hybrid, linear constraint	0.589 \pm 0.070	4849.7 \pm 650.3	0.774 \pm 0.040
Linear-Hybrid, hardsigmoid	0.552 \pm 0.082	4984.8 \pm 771.6	0.761 \pm 0.046
SciReN, linear constraint (1-layer KAN)	0.582 \pm 0.080	4708.2 \pm 673.1	0.769 \pm 0.049
SciReN, linear constraint (2-layer KAN)	0.571 \pm 0.094	4707.3 \pm 826.3	0.765 \pm 0.052

Conclusion

We propose SciReN, a method that

- Respects existing scientific knowledge**, provided by any process-based model
- Reveals new functional relationships** between environmental inputs and **unobserved biogeochemical processes**

The system is trainable end-to-end; every part of the model is **fully transparent**.

Potential future directions:

- Apply SciReN to new domains
- Experimentally validate the functional relationships learned by the model
- Make SciReN easier to train
- Understand **uncertainty** of revealed functional relationships
- Improve spatial generalization, e.g. geographic positional embeddings or domain adaptation

References

- [1] Jobbagy, E. G.; and Jackson, R. B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. *Ecological applications*, 10(2): 423-436.
- [2] Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., ... & Zhou, T. (2016). Toward more realistic projections of soil carbon dynamics by Earth system models. *Global Biogeochemical Cycles*, 30(1), 40-56.
- [3] Xu, H., Fan, J., Tao, F., Jiang, L., You, F., Houlton, B. Z., ... & Luo, Y. (2025). Biogeochemistry-Informed Neural Network (BINN) for Improving Accuracy of Model Prediction and Scientific Understanding of Soil Organic Carbon. *arXiv preprint arXiv:2502.00672*. Submitted to *Geoscientific Model Development*.
- [4] Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., ... & Tegmark, M. (2024). Kan: Kolmogorov-arnold networks. *arXiv preprint arXiv:2404.19756*.
- [5] Liu, Z.; Ma, P.; Wang, Y.; Matusik, W.; and Tegmark, M. 2024b. Kan 2.0: Kolmogorov-arnold networks meet science. *arXiv preprint arXiv:2408.10205*.

Acknowledgements

U.S. National Science Foundation

National Institute of Food and Agriculture

U.S. DEPARTMENT OF AGRICULTURE

AI-LEAF