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Abstract

Motivation: Single cell RNA-seq (scRNA-seq) data contains a wealth of information which has to

be inferred computationally from the observed sequencing reads. As the ability to sequence more

cells improves rapidly, existing computational tools suffer from three problems. (i) The decreased

reads-per-cell implies a highly sparse sample of the true cellular transcriptome. (ii) Many tools sim-

ply cannot handle the size of the resulting datasets. (iii) Prior biological knowledge such as bulk

RNA-seq information of certain cell types or qualitative marker information is not taken into ac-

count. Here we present UNCURL, a preprocessing framework based on non-negative matrix factor-

ization for scRNA-seq data, that is able to handle varying sampling distributions, scales to very

large cell numbers and can incorporate prior knowledge.

Results: We find that preprocessing using UNCURL consistently improves performance of com-

monly used scRNA-seq tools for clustering, visualization and lineage estimation, both in the ab-

sence and presence of prior knowledge. Finally we demonstrate that UNCURL is extremely scalable

and parallelizable, and runs faster than other methods on a scRNA-seq dataset containing 1.3 mil-

lion cells.

Availability and implementation: Source code is available at https://github.com/yjzhang/uncurl_

python.

Contact: gseelig@uw.edu or ksreeram@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput scRNA-seq technologies (Grun and van

Oudenaarden, 2015; Klein et al., 2015; Rosenberg et al., 2018; Zheng

et al., 2017) can provide biological insights such as revealing cell type

composition (Baron, 2016; Zeisel et al., 2015), cell lineage relation-

ships (Setty et al., 2016; Shin et al., 2015; Trapnell et al., 2014; Welch

et al., 2016) or even spatial relationships (Satija et al., 2015) between

cells in heterogeneous multi-cellular systems. Enabling such insights

are two key advantages of single cell transcriptomic datasets. First,

having information about individual cells helps avoid aggregation and

conflation of traits from disjoint groups of cells within a mixed sam-

ple (Blyth, 1972). Second, scRNA-seq can generate a very high-

dimensional dataset, both in terms of the number of cells and genes

that can be assayed, compared to other methods with single-cell reso-

lutions. However, advanced computational methods are required to

extract latent biological information from the raw read-counts, which

provide only a heavily sampled version of the full cellular transcrip-

tome (Trapnell, 2015; Wagner et al., 2016).

Most commonly used computational tools for cell type identifica-

tion (Ding and He, 2004; Jain and Dubes, 1988), lineage estimation

(Setty et al., 2016; Trapnell et al., 2014; Welch et al., 2016) and simi-

lar applications rely on an initial dimensionality reduction step using

methods such as PCA (Abdi and Williams, 2010), LLE (Roweis and

Saul, 2000) or tSNE (Maaten and Hinton, 2008). However, these

algorithms assume that the underlying data is drawn from a Gaussian

or a t-distribution, an assumption that does not always hold for

scRNA-seq data (Grun et al., 2014). The discrepancy between the

assumed and actual distribution fundamentally limits the accuracy of

the resulting predictions. In addition to such general purpose prepro-

cessing methods, several tools were developed to specifically deal with

scRNA-seq data (Dijk et al., 2017; Pierson and Yau, 2015; Wang

et al., 2017). However, these approaches do not scale well with
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increasing cell number. Finally, all existing methods rely almost exclu-

sively on unsupervised learning and do not incorporate useful and

commonly available prior information such as bulk gene expression

data or cell type specific marker genes to guide the analysis process.

Here, we introduce UNCURL, a preprocessing framework for

scRNA-seq data that addresses these shortcomings by estimating the

true transcriptomic state of the cells prior to the sampling effect of

RNA-seq. The preprocessed data from UNCURL can then be directly

used as input by most major unsupervised learning algorithms com-

monly used in the context of scRNA-seq data. An overview of the al-

gorithmic workflow of UNCURL can be seen in Figure 1A. The main

technical contribution of UNCURL is a generalized non-negative ma-

trix factorization (NMF) that explicitly accounts for the most likely

sampling distribution of the dataset. Furthermore, UNCURL incorpo-

rates an accelerated optimization method tailored for sparse input

data, so as to handle datasets with millions of cells efficiently.

Our algorithm exploits the low-dimensional nature of the true

biological state matrix, i.e. it assumes that each cell is in a convex

combination of a few archetypal cell-states. Under this assumption,

the true state matrix can be expressed as a product of an archetypal

main state matrix, M, comprising of gene-expression in the arche-

typal states, and a matrix of mixing coefficients, W, a cluster-by-cell

matrix for which each column sums to 1. We demonstrate that

working with the estimated (and factorized) true state matrix con-

siderably improves performance of state-of-the-art methods as com-

pared to directly operating on the sequencing data.

Additionally, UNCURL allows for the integration of prior infor-

mation which leads to large improvements in accuracy. To enable

semi-supervised learning, UNCURL’s toolbox contains a method

(qualitative normalization, or qualNorm) for standardizing any

prior biological information including bulk RNA-seq data, micro-

array data or even information about individual marker gene ex-

pression to a form compatible with scRNA-seq data. We

demonstrate that initialization using prior knowledge in an appro-

priately standardized manner dramatically improves performance

compared to unsupervised learning.

2 Materials and methods

2.1 State estimation
2.1.1 Procedure

An implicit assumption shared by many scRNA-seq data analysis

tools is that any biological sample contains a limited number of cell

types and that any individual cell can be considered a mixture of

these cells. Here, we make this convex mixture model explicit,

which leads to a model similar to NMF. NMF is classically used

when the entries have Gaussian noise (Lee and Seung, 2001) and has

been found beneficial in analyzing gene expression data gleaned

from microarrays (Brunet et al., 2004). In scRNA-seq, the sequenc-

ing process can produce noise following several different distribu-

tions such as Gaussian, log-normal, Poisson and Negative Binomial,

potentially with zero-inflation (Pierson and Yau, 2015). While NMF

can be directly applied to the scRNA-seq data (Shao and Höfer,

2017), utilizing the sampling distribution becomes critical especially

when the number of reads per cell is small. While the sampling dis-

tribution is carefully modeled in differential expression studies

(Anders and Huber, 2010), the most commonly used algorithms for

visualization, cell-type identification as well as lineage estimation do

not account for this model. Thus, while factoring the matrix, we

need to account for the sampling distribution in order to estimate

the true cell-state matrix and mixing coefficients accurately from the

observed gene expression matrix.

We assume that we are provided with a data matrix X 2 R
n�d,

where n is the number of genes and d is the number of cells, and k,

the number of cell types. Let Xg;c denote the count measured for

gene g in cell c, and let Xtrue
g;c be the relative abundance of gene g in

cell c. We assume that the true matrix has a non-negative decompos-

ition into two factors, i.e. Xtrue ¼M�W. Here, M 2 R
n�k is the

matrix of cell type means of the k-archetypal states with Mg;j denot-

ing the expression of gene g in archetype k. W 2 R
k;d is the mixture

parameter matrix which stores each cell as a convex combination of

the archetypes, i.e. Wj;c is the contribution of archetype j to cell c.

Thus W satisfies 1kWj;c ¼ 1 and Wj;c � 0.

Since we do not observe directly the relative abundance but only

a sampled version, we assume that there is a channel that connects

the true abundance to the observed abundance, Pðxjxtrue; hÞ, i.e.

given a value of xtrue there is a certain distribution on x with some

parameters h. Note that we have not used a subscript for g and c to

emphasize that the same distribution is used for all genes. We give

three examples here, but our framework works with general distri-

butions: (1) PðxjxtrueÞ is a Gaussian distribution with mean xtrue and

a fixed variance 1 (say). (2) PðxjxtrueÞ is a Poisson distribution with

mean xtrue. (3) PðxjxtrueÞ is such that log ðxÞ is a Gaussian with mean

log ðxtrueÞ and variance 1. Our goal now is to maximize the log-

likelihood of the observed data matrix X, by finding the optimal M

and W. Note that PðXjM;W;HÞ :¼
Q

g;c PðXg;cjXtrue
g;c Þ.

This problem is non-convex but the sub-problems of estimating

either M or W with the other matrix fixed are convex problems for

Fig. 1. (A) The primary input for UNCURL is the highly sampled single cell sequenced data and optionally any prior information that is known about the specific

dataset. UNCURL then converts the observed sampled data to an estimated version of the true data using a novel sampling model aware matrix factorization.

This can then be used in downstream unsupervised learning tasks. (B) The convex mixture of cell states assume that all cell states lie in the convex hull spanned

by a few extreme cell types
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many common sampling distributions, including the ones mentioned

above. We thus utilize an alternating maximization algorithm to es-

timate these model parameters as follows:

W ¼ argmaxW log ðPðXjM;W;HÞÞ subject to; Wj;c � 0 and

M ¼ argmaxM log ðPðXjM;W;HÞÞ subject to Mg;j � 0:

We repeat these two steps iteratively till convergence or till a

maximum number of iterations. Once converged, we normalize the

columns of W to sum to 1 to ensure the condition 1kWj;c ¼ 1 is satis-

fied. We note that each of the steps is convex for many distributions

and can be solved by gradient descent. Unlike the Gaussian and log-

normal, Poisson Log-Likelihood does not have closed form solutions

for even the sub-problems i.e. identifying M and W. Hence, Poisson

state estimation requires the use of gradient descent based strategies,

most of which have sub-linear convergence guarantees only for func-

tions with Lipschitz continuous gradients. This is not true for the

Poisson Log-Likelihood. However, (Bauschke et al., 2017) utilized a

different definition of smoothness and derived a generalized algo-

rithm (NoLips) that is capable of achieving a sublinear rate of con-

vergence for a class of non-Lipschitz continuous functions including

the Poisson Log-Likelihood. Here we use a custom alternating mini-

mization approach using the NoLips algorithm to optimize the

Poisson Log-Likelihood with additional modifications to allow for

faster computation for sparse matrices and ability to parallelize the

computation (see Supplementary Methods).

2.1.2 State estimation for different distributions

While UNCURL can easily be extended to different sampling distri-

butions, here we have limited ourselves to three of the most common

ones, namely: Gaussian, log-normal and Poisson. It is easy to see

that the state estimation problem for the Gaussian distribution, if

variances are treated as uniform, is identical to the Non-Negative

Matrix Factorization (NMF) problem. Thus, we utilize standard

NMF solvers for this distribution followed by the column normal-

ization of W as stated above. Similarly, for log-normal data, trans-

forming the data as Y ¼ log ð1þXÞ makes the transformed dataset

Gaussian distributed and allow us to again use NMF solvers. It has

been our observation that column normalizing the Gaussian and

log-normal distributed datasets before state estimation can lead to an

improvement in results and hence has been performed in this paper.

2.2 Distribution selection
In our program we have a set of possible distributions to choose

from. In order to select the distribution to use automatically, we

implemented a method using fit error (Fig. 2A). First, we fit the dif-

ferent distributions for each gene using maximum likelihood.

Then, we compute the distance between the empirical distribution

and each of the fitted distributions. This test is similar to the root-

mean-square statistic for goodness of fit (Perkins et al., 2011). The

distribution with the minimum such distance is considered the best

fit. Finally, we output the best estimation fraction vector which

captures the fraction of genes for which each distribution is the

best-fit distribution. This is meant to be a guideline for the selec-

tion of the sampling distribution during the matrix factorization

process.

2.3 Initialization for state estimation
Since state estimation is a non-convex problem, its result depends

greatly on the initialization. Two commonly used methods for NMF

initialization are based on k-means and SVD (singular value decom-

position), respectively (Boutsidis and Gallopoulos, 2008; Langville

et al., 2006). In UNCURL, we have two ways to initialize the state

estimation: (i) distribution-specific k-means initialization and (ii)

truncated SVDþk-means based initialization. We describe our dis-

tribution specific K-means in the rest of the section, particularly for

the Poisson case.

In the following sections we develop an explicit framework to

utilize prior biological information to initialize the matrix factoriza-

tion. This relies on clustering each gene into clusters of high and low

expression, which is done using k-means clustering for Gaussian and

log-normal (after log-transformation) distributions. Here we outline

a similar procedure for the Poisson distribution that allows our ap-

proach to be consistent across different distributions along with an

approach to initialize the clustering.

2.3.1 Poisson k-means11

k-meansþþ (Arthur and Vassilvitskii, 2007) is a well-known seed-

ing method for the k-means clustering algorithm, which tries to

identify k points in the data with the highest mutual separation.

While popular, its use of Euclidean distances between points makes

it a poor fit for non-Gaussian distributed data. To use a similar ap-

proach for Poisson sampled data, we use a new distance metric.

One intuitive distance would be the Poisson log-likelihood with

one data point as the mean (say y) and the other as the point being

considered (say x). Let (llpðxjyÞ be defined as the log likelihood of a

Poisson distribution with mean y. However, llpðxjyÞ is not symmet-

ric, which is required for a distance measure. We create a

Fig. 2. Selecting the best sampling distribution for a dataset from a set of distributions using Distribution Selector. (A) Overview of Distribution Selector. (B) ‘Best

Estimation Fraction’ correctly identifies distributions of synthetic datasets. (C) Comparison on different single cell datasets show that using predicted distribution

leads to the highest cluster purity (measured using arg-max NMI)
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normalized version of this function which satisfies all properties of

a distance measure:

dðx; yÞ ¼ llpðxjxÞ þ llpðyjyÞ � ðllpðxjyÞ þ llpðyjxÞÞ

¼ ðx� yÞ log
x

y

� �

This distance is based on the observation that value of llpðxjyÞ is

maximum when x¼ y. Thus, the d(x, y) quantity measures the dis-

tance from the maximum value log-likelihood value for both x and y

(for the sake of symmetry). This distance then replaces the Euclidean

distance used in the standard implementation of k-meansþþ.

2.3.2 Poisson k-means

Poisson k-means is very similar to the classical k-means clustering

with the difference being in the underlying distribution of the data;

it is essentially the hard EM algorithm applied with a Poisson distri-

bution. As with state estimation, we assume we are provided the

expected number of cell types k and the data matrix X 2 R
n�d. The

first step of the algorithm involves calculating the Poisson log-

likelihood for each cell given a set of means (M 2 R
n�k), represent-

ing k cell types and then assigning each cell to the cell type for which

it has the highest log-likelihood. The logarithm of the probability

that cell c with observed counts X:c is sampled from the type i with

gene expression M:i is then llpðcjiÞ ¼ �
P

j ½M�ji þ ½X�jc log ð½M�jiÞ.
This is called the E step of the algorithm, which partitions the

cells into distinct types. This is followed by the M step, where we

find the means for each cell type that maximize the log-likelihood.

For the case of the Poisson distribution, this is simply the arithmetic

mean of the data given by:

Mg;i ¼
1

jSij
X
c2Si

Xg;c 8g

Here, Si is the set of cell indices for which the log-likelihood is high-

est for the ith mean. The M step creates a new estimate of the means,

which are then used to redo the E step. This procedure is repeated

till convergence or until a maximum number of iterations.

2.4 Qualitative semi-supervision with QualNorm
In many scenarios where scRNA-seq is carried out, there is a wealth

of prior knowledge. For example, there may be FISH images or bulk

gene expression data measured through microarray or RNA-seq.

Alternatively, marker genes may be known for a subset of cell-types.

Two major issues in using such information are the incompatibility

between different data types (e.g. FISH images or microarray data

with RNAseq data), and variability between experiments using the

same technique (e.g. bulk RNA-seq batch effects). We develop a

method to specifically account for such variations in order to lever-

age this prior information. A key benefit with our method is that

since the prior information is leveraged in UNCURL preprocessing,

it can boost the performance of downstream methods not designed

to utilize such prior information.

A basic problem that we need to solve is in deciding how to in-

corporate such differing type of information into our framework.

Our hypothesis is that even though the particular quantitative meas-

urements may not transfer well to scRNA-seq, the qualitative infor-

mation inherent in such a dataset can be exploited. To do that, we

first convert the available prior information into a binary matrix,

that can then be imported into our method. The binarization is moti-

vated by the observation that cell type specific genes often have

bimodal expression patterns: they are high in certain cell types and

low in most others (Shmulevich and Zhang, 2002). In some cases,

the prior biological knowledge available may be marker information

which is already in a binary format. In other cases, where prior bio-

logical knowledge is available as bulk gene expression or other real-

valued measurements, we first binarize the gene expression by

thresholding around the central value for each differentially

expressed gene. Differentially expressed genes are identified using

DESeq2 (Love et al., 2014) on the bulk expression data using one-

vs-all different expression analysis. In our experiments, we have

used the Poisson version of t-test (Gu et al., 2008) to identify genes

that are composed of two separate distributions and have limited

the input to only include up to 25 ‘ON’ genes per cell type with the

highest p-values. Details of this process are described in the

Supplementary Methods.

The inputs to the framework are the following: i) A single cell

sequenced data matrix X 2 R
n�d, ii) the number of cell types

expected in the data, k and iii) a binary matrix of dimension

B 2 f0; 1gn0�k0 , where n0 is the number of genes for which the infor-

mation is provided and k0 is the number of cell types for which the

information is provided. We note that the number of cell types k0

for which prior information is available can be lesser than the num-

ber of cell-types k, and the number of genes n0 for which prior infor-

mation is available can be lesser than total number of genes in the

data n.

Now, the main algorithmic problem is how to utilize the matrix

B in solving the state-estimation problem. The obvious approach is

to utilize the matrix as an initialization for state estimation.

However there are three bottlenecks in our problem. (i) The matrix

is binary, not real valued and it is unclear how to utilize such a ma-

trix. (ii) Information about every cell type is not available, i.e.

ko � k. (iii) Information is not available about every gene, i.e.

no � n. We deal with these issues sequentially.

Suppose we have a binary prior information matrix B such that

n0 ¼ n and k0 ¼ k. We wish to convert this into a real valued matrix

M0 of the same size, where the expression is in the same scale as the

scRNA-seq data X. To do this, we use the data matrix X to calculate

the high and low levels for each gene by clustering the observed ex-

pression values for that gene into two clusters and mapping the high

and low values of cluster centers to 1 and 0 respectively. We note

that in the case that n0 � n and k0 � k, still the same method can

be utilized to obtain the real-valued matrix M0 of size n0 � k0.

Next, we take up the issue that information is not available about

all genes, i.e. n0 < n. The basic idea that we exploit is the following:

the knowledge even of some genes is sufficient to cluster all observed

cells into k0 types, using a distribution specific clustering (for example,

the Poisson k-means algorithm described earlier). The k0 cluster centers

in dimension n can then be used as the means of these clusters, thus ef-

fectively giving us an updated M0 matrix of size n� k0.

Finally, we proceed to the issue that only some cell-types are

specified, i.e. k0 � k. In case that k0 ¼ k, we have an initialization

for all the matrix M0, which can be used an initialization for the

alternating maximization algorithm. In case that k0 < k, we do

one round of distribution specific k-meansþþwith the first k0

components initialized by the known data and the rest obtained as

maximally distant points from the known points. This returns us

the means for all the k components, which we update as M0 of di-

mension n�k. This matrix of predicted means M0 is now used

to initialize the various downstream algorithms, in particular

serving as an initialization for maximizing W in the alternating

optimization.
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3 Results

3.1 Distribution selector correctly predicts the best

sampling distribution for a dataset
To verify the accuracy of the distribution selection methodology, we

first generated three synthetic datasets using different distributions

(Poisson, Gaussian and log-normal). Each gene in the synthetic data-

set has a mean that was randomly chosen between 0 and 1, with a

constant variance for all genes for the Gaussian and log-normally

distributed datasets.

As seen in Figure 2B, distribution selector correctly predicts the

dominant distribution for each of the synthetic datasets. On the real

datasets, we do not know the underlying distribution, however, we

can check which distribution performs best on the downstream task of

clustering. We check whether the predicted distribution leads to the

highest accuracy. The predicted clusters are identified by assigning

each cell to the highest weight class in the cell type fraction matrix, W.

The cluster purity is then measured using Normalized Mutual

Information (NMI) between the predicted clustering and the true cell

types in the data and is seen to be highest for the distributions that are

predicted to be dominant distribution according to distribution select-

or as seen in Figure 2C. In general, the Poisson distribution is seen to

be a better fit for count or UMI data, while the log-normal distribution

is a better fit for normalized (FPKM, RPKM, TPM) data.

Having identified the sampling distribution for a dataset, the state

estimation procedure factorizes the data into two matrices, M and W

using the distribution, as described in Section 2.1.1. The product of

these factorized matrices then can be treated as an estimate of the true

state matrix and used for all subsequent downstream learning tasks.

3.2 Preprocessing leads to improvements in clustering

and visualization
Clustering and dimensionality reduction are common downstream

tasks for scRNA-seq data. These are both unsupervised tasks: clus-

tering involves dividing the cells into different cell types based on

similarity of gene expression patterns, while dimensionality reduc-

tion involves creating a low-dimensional view of the data for visual-

ization or clustering. Both tasks are useful in identifying cell sub-

populations in an unlabelled dataset.

Two of the most commonly used tools for scRNA-seq data are

PCA and tSNE (Maaten and Hinton, 2008). While these algorithms

have different underlying mechanisms for converting the high di-

mensional information to typically 2 or 3 dimensions, they assume

Gaussian or t-distributions for the dataset, which is often not reflect-

ive of the actual sampling distribution of the data. To alleviate such

issues, specialized tools have been developed for scRNA-seq data

such as SIMLR (Wang et al., 2017) and ZIFA (Pierson and Yau,

2015), which explicitly account for the distribution of scRNA-seq

datasets. While ZIFA explicitly accounts for zero inflation, it does

not account for the full sampling distribution. SIMLR uses multiple

Gaussian kernels to fit the data without having an explicit sampling

model. While these tools lead to improvements over PCA/tSNE, we

demonstrate that using UNCURL as a preprocessing tool can greatly

improve the performances of these common dimensionality reduc-

tion tools and often even make them better than specialized tools

such as ZIFA/SIMLR.

UNCURL can be used for clustering in several ways. The sim-

plest clustering method is to assign as the cluster ci ¼ argmaxjWj;i

for cell i, where W is inferred from state estimation. We call this

method UNCURL-W. In addition, clustering can benefit from

UNCURL preprocessing by running tSNE or PCA and then k-means

on the output of UNCURL.

We demonstrate the utility of using UNCURL as a preprocessing

tool by comparing the clustering performance of various methods

with and without preprocessing with UNCURL, along with cluster-

ing after dimensionality reduction with ZIFA and SIMLR.

Additionally we compare with another preprocessing tool, Magic

(Dijk et al., 2017). Performance was measured using the NMI be-

tween true and predicted clusters with the selected preprocessing

and clustering methods, as done in Wang et al. (2017). As seen in

Figure 3A, UNCURL improves the performance of k-means and

PCA on all four datasets (a more comprehensive set of results can be

seen in Supplementary Table S2), and it improves the performance

of tSNE on most datasets. Moreover, in all four datasets the top per-

forming approach (showed with the red dotted line) is an UNCURL

preprocessed approach.

To investigate the effect of UNCURL preprocessing on visualiza-

tion, we run tSNE on Usoskin et al. (2015) and Tasic et al. (2016)

Fig. 3. Preprocessing with UNCURL leads to improved visualization and clustering performances. (A) Comparison of various clustering approaches with and with-

out preprocessing on different scRNA-seq datasets. (B–C) Different 2D visualizations of the Usoskin and Tasic datasets respectively
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datasets, which are FPKM and Count valued respectively. We com-

pare against the unprocessed tSNE visualization, tSNE after prepro-

cessing using Magic and visualization using SIMLR (which is closely

related to tSNE). The Usoskin dataset (Fig. 3B) comprises of sensory

neuronal cells from four principal neuronal types. We see that while

all other approaches end up grouping one or more cell types

together, UNCURL leads to complete separation of all principal

neuronal types.

The Tasic (Fig. 3C) dataset is comprised of cells from mouse cor-

tex tissue, with 49 cell types, including neuronal and non-neuronal

cells. Using UNCURL along with tSNE, we were able to identify 49

distinct clusters that corresponded very strongly to the cell types

identified previously. For the same dataset, the performance of tSNE

without preprocessing and Magic preprocessing was seen to be sig-

nificantly worse, with many cell types being grouped together.

An important point to note here is that in each of these datasets,

the true number of cell types (k) was known and used during state

estimation. However, this may not always be the case, so robustness

to varying values of k is desirable. We tested the robustness of clus-

tering NMI to k on various datasets (Supplementary Fig. S7) and

found that UNCURL is quite robust to overestimation of k (to with-

in a factor of 2), but that underestimation can lead to worse results.

3.3 Prior knowledge improves UNCURL
To demonstrate the utility of prior biological knowledge, we look at

a dataset with available qualitative information in the form of bulk

RNA-seq data obtained from different experimental conditions, and

consider the effect of semi-supervision on visualization with tSNE.

Specifically, we focus on the subset of the data from Zeisel et al.

(2015), comprised of five non-pyramidal cell types: oligodendro-

cytes, astrocytes, interneurons, microglia and endothelial cells. An

upper bound on the performance with semi-supervision information

is obtained when we feed the aggregate means of the true clusters

(the means of all cells with each of the ground-truth labels) as the

initialization. We compare this with semi-supervision using the out-

put of QualNorm, bulk means and unsupervised preprocessing. In

order to test the validity of our QualNorm framework, we compare

the performance with aggregate-mean initialization to the perform-

ance obtained when we process these aggregate means through the

QualNorm framework. In Figure 4B, the four initialization methods

are compared, and it is seen that while semi-supervision with aggre-

gate means and QualNorm means lead to a clear separation of cell

types and an improved over unsupervised preprocessing, initializa-

tion with bulk means leads to worse visualization for this dataset. A

similar experiment (Supplementary Fig. S1) with the 10� pooled

dataset also leads to a qualitative improvement in tSNE/PCA based

visualizations and improvement in clustering purity.

First, we simulate the scenario where we have information avail-

able about a subset of cell types by using different number of known

means (generated by binarizing the public bulk data (Zhang et al.,

2014) and passing it through the QualNorm) and generating the other

means using our version of the distribution informed k-mean-

sþþ algorithm. We then calculate NMI between predicted and true

clusters (using arg-max of W) to quantitatively measure the perform-

ance of state estimation. As seen in Figure 4C, we observe that

increasing the number of known means leads to improvement in ac-

curacy. Moreover, we also see that prior information about even a

subset of cell types is usually enough to improve the performance over

the completely unsupervised case.

Then, to test the effect of having information about only a subset

of the genes, we chose different number of top cell type specific

genes (measured by one-vs-all differential expression) as initializa-

tion points for UNCURL and tested their effect on the purity of the

clusters. Furthermore, we also tested the effectiveness of three differ-

ent semi-supervision strategies namely, i) true cluster centers (gener-

ated by taking aggregate means with the known true labels), ii) bulk

means and iii) QualNorm means. It is seen in Figure 4D, that while

the true cluster centers lead to almost perfect estimation of cluster

membership, the QualNorm means lead to better accuracy than

using the bulk data for most subset sizes, which we attribute to

biases inherent to different sequencing methods. This effect becomes

more pronounced as the number of genes being considered

increases. An interesting observation here is that information about

a few cell type specific genes is enough to very high NMI values,

even when the information is qualitative.

While the results in these two cases of missing information high-

light the flexibility of the QualNorm framework to handle different

amounts of provided prior information, they also demonstrate how

having even a little additional information is enough to improve un-

supervised learning results significantly.

3.4 Improving lineage estimation with UNCURL
One biologically important downstream task post dimensionality re-

duction is lineage estimation, which is often used to study the

Fig. 4. Semi-supervision with prior biological information can further improve

the performance of UNCURL. (A) An illustration of the qualNorm framework

to convert qualitative prior information into good initialization points for un-

supervised learning algorithms. (B) Visualization using tSNE with unsuper-

vised, aggregate, bulk and QualNorm semi-supervision on a subset of the

Zeisel dataset (containing 1672 cells and 5 cell types). (C) Comparison of im-

provement in purity with prior information about different number of cell

types. (D) Comparison of clustering purity with prior information about differ-

ent number of cell type specific genes
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dynamics of various genes during cell differentiation or develop-

ment. Lineage inference aims at identifying smooth continuous

manifolds in which cells lie in order to study the gradual change in

gene expression during various developmental processes. While

there exist several common tools that exist for this purpose (Qiu

et al., 2017; Trapnell et al., 2014; Welch et al., 2016), most tools

operate directly on the sampled observed data. Additionally, most

lineage estimation tools do not allow for the incorporation of any

prior biological data beyond selecting the subset of genes to use for

lineage inference. Here we demonstrate that the use of UNCURL

preprocessing can lead to the estimate of cleaner lineages as well as

allow for the incorporation of qualitative prior information into the

lineage inference process.

Since it is not possible to obtain ground truth ordering of cells,

we first study the effect of UNCURL preprocessing on simulated

datasets. We created two separate synthetic lineages (a linear and a

branched) using a method described in the Supplementary

Methods, and sampled using a Poisson distribution. For both data-

sets, we preprocessed the datasets using UNCURL and Magic and

tested three commonly used lineage inference tools (Monocle,

Monocle2 and Slicer) on both preprocessed and unprocessed data-

sets (Supplementary Figs S2–S4). For the linear dataset, a good

measure of lineage accuracy is the rank correlation of the true

ordering of the cells with the pseudotime (an arbitrary metric that

is commonly used to measure progress along a trajectory). We find

that UNCURL improved the rank correlation of all three methods

compared to both the unprocessed data and Magic, whereas pre-

processing using Magic lead to worse performance for both

Monocle2 and Slicer. For the branched data, there is not a similarly

simple way to quantify lineage estimates so we looked at

the branch purity (a measure of how well cells have been ordered

into the right branches). Even in this case we found that the

branch purity obtained in Monocle2 after preprocessing with

UNCURL was higher than both unprocessed and preprocessing

using Magic.

We now look at real biological data with some amount of

ground truth data available. We specifically focus on the dataset of

Hanchate et al. (2015) which contains cell types comprised of four

stages of olfactory neurogenesis along a linear differentiation path.

The cell types were identified using markers specific to different

stages of development. While this information itself is of the form of

qualitative prior information, using the marker genes used to label

the cells would make the problem trivial for UNCURL. Hence, we

instead simulate a bulk dataset by using the true labels of the data-

set, which is then binarized to generate qualitative marker informa-

tion for all sufficiently expressed genes (same as used in the original

paper). We then use this to use both the qualNorm initialization as

well as unsupervised initialization to preprocess the dataset using

UNCURL. We then perform lineage inference using Monocle2,

Monocle and Slicer on the unprocessed data, UNCURL prepro-

cessed data and Magic preprocessed data. As seen in Figure 5A–C,

QualNorm initialized UNCURL leads to consistent improvements

of the lineage inference algorithms when measured by the amount of

overlap between the known cell types in the lineage graphs. In add-

ition, preprocessing using UNCURL without semi-supervision leads

to qualitatively similar lineages as the unprocessed datasets

with slight overlap between consecutive cell types (Supplementary

Fig. S5). On the other hand, while preprocessing using Magic seems

to lead to qualitatively similar lineages for Monocle2 and Slicer, it

also leads to the estimation of a major non-existent branch in the

case of Monocle (Fig. 5B).

3.5 Scalability
UNCURL is capable of running on larger datasets comprising of up

to millions of cells. UNCURL uses a fast public NMF package

(Pedregosa et al., 2011) for the log-normal and Gaussian distribu-

tions, while using SPNoLips (Sparse-Parallel-NoLips, described in

the Supplementary Methods), which is a custom implementation

based on the NoLips algorithm (Bauschke et al., 2017) for the

Poisson distribution. Both implementations are capable of using

sparse matrices as input for memory and runtime advantages, and

are parallelizable.

The runtime of UNCURL is OðnpkÞ, where np is the number of

nonzero elements in the input matrix X, and k is the number of cell

types. This means that UNCURL scales linearly in the number of

cells in the dataset. To deal with the dependence on k, one possibil-

ity is to use UNCURL hierarchically: first run it with a small k on

the entire dataset, then partition the dataset based on the assigned

clusters, and run UNCURL on the subsets.

The computational performance of UNCURL on various datasets

compares favorably to that of other methods as seen in Figure 6. The

runtimes of UNCURL is usually less than the other comparable meth-

ods for clustering tasks on most datasets as seen in Figure 6 (a more

comprehensive comparison is in Supplementary Table S3). The mem-

ory usage was lower than that of comparable methods such as SIMLR

and Magic. UNCURL’s performance is best on sparser datasets,

where more entries are zero, since the NoLips update function only

uses nonzero values of the data matrix. Runtime comparisons with

Magic and ZIFA are limited because Magic’s memory usage is quad-

ratic in the number of cells and ZIFA is slow compared to other algo-

rithms, making it impractical to run on the largest datasets.

3.6 Exploratory analysis of the 103 1.3 million dataset
The scalability of UNCURL allows it to run on very large data

matrices, including the 1.3 million-cell dataset from 10XGenomics

(2017). This dataset is composed of unsorted brain cells from 18-

day mouse embryos. We tested UNCURL on both the full dataset

and a 20 000 cell subset. Since this dataset does not have any ground

truth labels, we used various exploratory methods to characterize

the different cell types present.

Fig. 5. Semi-supervised preprocessing using UNCURL can dramatically im-

prove the performance of lineage inference algorithms. (A–C) Lineages

inferred by Monocle2, Monocle and Slicer respectively with no-preprocess-

ing, Magic preprocessed and semi-supervised UNCURL preprocessed for the

dataset of Hanchate et al. (containing 85 cells from 4 cell types). The lineages

obtained after preprocessing using semi-supervised UNCURL lead to much

clearer separation of known cell types in the predicted lineages
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We empirically chose the number of main cell types to be 10

after experimenting with various values of k. Our selection of k was

based on the distinctness of genetic signature of the identified clus-

ters. Figure 7A show the result of UNCURL’s clustering and visual-

ization on the 20 000 cell subset while 7B shows the unprocessed

tSNE visualization followed by k-means clustering. To test the con-

currency of the two approaches, we generated a confusion matrix

(Fig. 7D) and noticed decent overlap between the clusters resulting

from the two distinct methods (with an NMI of 0.45).

To evaluate the clusters generated by UNCURL, we identified

the genes most highly expressed in each cluster compared to other

clusters (see Supplementary Methods for description). We then cre-

ated a subset of the expression matrix, where the rows are grouped

by cluster-specfic genes and columns are grouped by cluster-specific

cells. Visualizing the expression heatmaps before and after

UNCURL (Fig. 7C) shows that the top cluster-specific genes are dis-

tinctly expressed only in their individual clusters. Moreover, this ex-

pression pattern is amplified in the UNCURL processed data

compared to the unprocessed data. This pattern is not seen when the

data is preprocessed with Magic (Supplementary Fig. S8). To further

validate our findings, we overlay the average expression of the top

cluster-specific genes for each cluster on the tSNE visualization

(Fig. 7E).

4 Conclusion

In this manuscript, we introduced a preprocessing framework for

scRNA-seq data. Our framework, UNCURL, uses the estimated

sampling distribution of scRNA-seq data together with a convex

mixture model assumption to estimate a true state matrix from

observed scRNA-seq data. UNCURL further includes a computa-

tional framework, qualNorm, which can be used to incorporate

prior biological knowledge into an improved estimate of the true

state matrix.

By comparing against several benchmarking datasets, we dem-

onstrated that preprocessing using UNCURL leads to superior

separation of cell types in reduced dimensions as well as higher

cluster purity for clustering tasks compared to prior tools. We

further showed that semi-supervision using different types of

prior information can lead to further improvement in accuracy of

the learning tasks. Furthermore, we demonstrate that semi-

supervised preprocessing using UNCURL allows the incorpor-

ation of prior information in even lineage estimation tasks.

UNCURL scales to large datasets and typically runs faster than

prior methods, particularly on large and sparse datasets. The run

time for UNCURL scales linearly with the number of cell types in

the dataset, but it may be possible to further reduce run-time

using a hierarchical strategy.

Fig. 6. Timing comparison of different clustering approaches for various scRNA-seq datasets. UNCURL is faster than other approaches on most datasets of vari-

ous sizes. Moreover, unlike methods like ZIFA and Magic, UNCURL is scalable for large datasets. A more comprehensive comparison can be found in

Supplementary Table S3

Fig. 7. Exploratory analysis of the 10� 1.3 million cell dataset with UNCURL. (A) tSNE plot on UNCURL preprocessed data with argmax inferred labels. (B) tSNE

plot without preprocessing with k-means inferred labels. (C) Clustered heatmaps showing the top cluster specific genes identified by UNCURL before and after

preprocessing. Cells sorted by decreasing W for each cluster. The heatmaps demonstrate that UNCURL identifies distinct sub-populations of cells and prepro-

cessing makes the expression of the top clusters more distinct. (D) Confusion matrix between UNCURL and tSNEþ k-means labels. (E) Average expression of the

top cluster specific genes overlaid on the UNCURL processed tSNE plot. The expression for each cluster is colored to correspond the coloring used in A. It can be

seen that the average expression of the top genes are very cluster specific, indicating that they identified distinct sub-populations
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UNCURL is an efficient preprocessing framework for several un-

supervised and semi-supervised learning tasks, but it still has some

limitations. Tools that already specifically account for the sampling

effect of single cell sequencing may not benefit from UNCURL pre-

processing. Another potential shortcoming is the need to know or at

least have a good estimate of the true number of cell types. This is a

limitation common to many approaches for single cell data analysis,

and we are currently working on incorporating biological prior in-

formation into selecting the optimal number of cell types in a data-

set. Another limitation is that the semi-supervision framework

converts all prior information into a binary format, although it can

be easily generalized to multi-level quantizations. While this con-

straint is reasonable for truly cell type specific genes, it still limits

the amount of prior information that can be used. For instance,

many genes that are not strictly cell type specific might also contain

useful information that cannot currently be utilized. Future work

will thus be aimed at expanding the semi-supervision framework to

incorporate more diverse qualitative information.
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