
Appendices for Monitoring Vegetation From
Space at Extremely Fine Resolutions via
Coarsely-Supervised Smooth U-Net
A Additional Results
We break down the results on “train tiles” by land cover type
(Table 3) and resolution (Table 4). CS-SUNet performs best
across all land cover types and resolutions, indicating the ro-
bustness of our approach.

Figure 4 presents scatterplots of true vs. predicted SIF for
fine-resolution (30m) pixels, for CS-SUNet and the best per-
forming baseline (Ridge Regression). CS-SUNet’s predic-
tions are generally closer to the identity function, indicating
more accurate predictions.

Figure 4: Ground-truth vs. predicted SIF for 30m pixels, on train
tiles. Top: Ridge Regression, Bottom: CS-SUNet

.

B Importance of Regularization
As described in the paper, we find that early stopping (based
on a small fine-resolution validation set) and/or using the
smoothness loss is critical to producing reasonable results.
Without regularization, the model can overfit in a way that is
unique to coarsely-supervised regression tasks. For example,
Figure 5 plots losses over time for a model run that is not

Figure 5: Losses over time in a model that is not sufficiently regu-
larized. Note that the coarse-resolution losses (blue/green) continue
decreasing for while, but the fine-resolution losses (red/orange) go
up quickly after epoch 20-30, indicating overfitting to the coarse la-
bels.

sufficiently regularized. Note that the coarse-resolution vali-
dation loss (green) decreases continuously until around epoch
60, but the fine-resolution losses (red/orange) start increasing
after epoch 20-30. In later epochs, the model is making pixel
predictions that produce the correct tile average SIF, but are
inaccurate for the individual pixels.

Specifically, we observed that over-trained models tend to
output extreme maps; the model learns how to keep pushing
the predictions for low SIF regions down and high SIF regions
up, in a way that maintains the correct average. An example
of this is shown in Figure 6.

Figure 6: Example of overfitting. Left: ground-truth SIF map.
Right: prediction by a U-Net that is over-trained. Note that the
average tile SIFs are not too different, but the model tends to output
extremely low and high values that do not reflect reality.

Given the coarse nature of training labels, the only way for
the model to avoid this is to look across multiple tiles, and
ensure that pixels with similar features in different tiles have
similar SIF predictions. In other words, the model needs to be
well-regularized. So far, we found that early stopping (based
on a fine-resolution validation set) and a smoothness loss are
the most effective forms of regularization for our problem.
Early stopping is known to implicitly encourage smooth mod-



Method Grassland Corn Soybean Deciduous Forest
Trivial: predict coarse 0.255 0.225 0.278 0.196
Ridge Regression 0.230 0.183 0.212 0.192
Gradient Boosting 0.223 0.198 0.219 0.206
Random Forest 0.237 ± 0.002 0.212 ± 0.001 0.221 ± 0.003 0.211 ± 0.003
ANN 0.247 ± 0.005 0.193 ± 0.009 0.226 ± 0.007 0.193 ± 0.006
Pixel NN 0.219 ± 0.002 0.189 ± 0.006 0.217 ± 0.004 0.207 ± 0.004
Vanilla U-Net 0.211 ± 0.010 0.208 ± 0.008 0.258 ± 0.011 0.179 ± 0.002
CS-SUNet 0.188 ± 0.007 0.167 ± 0.003 0.204 ± 0.008 0.171 ± 0.003

Table 3: NRMSE by land cover type, 30m pixels in train tiles (where 3km coarse-resolution labels were seen during training). Lower is better.

Method 30m 90m 150m 300m 600m
Trivial: predict coarse 0.248 0.245 0.229 0.203 0.165
Ridge Regression 0.203 0.177 0.155 0.127 0.096
Gradient Boosting 0.212 0.183 0.163 0.134 0.105
Random Forest 0.220 ± 0.002 0.184 ± 0.001 0.163 ± 0.000 0.135 ± 0.000 0.111 ± 0.000
ANN 0.215 ± 0.005 0.186 ± 0.002 0.164 ± 0.002 0.133 ± 0.002 0.108 ± 0.006
Pixel NN 0.208 ± 0.004 0.179 ± 0.001 0.158 ± 0.001 0.130 ± 0.001 0.099 ± 0.002
Vanilla U-Net 0.223 ± 0.005 0.194 ± 0.001 0.176 ± 0.002 0.150 ± 0.002 0.121 ± 0.003
CS-SUNet 0.184 ± 0.005 0.168 ± 0.002 0.150 ± 0.001 0.123 ± 0.000 0.094 ± 0.001

Table 4: NRMSE by resolution, train tiles (where 3km coarse-resolution labels were seen during training). Lower is better.

els where similar inputs map to similar outputs [Rosca et al.,
2020].

C Impact of Smoothness Loss

While early stopping already does a lot to regularize the
model, we find that incorporating a smoothness loss can fur-
ther prevent the model from overfitting in later epochs, as
it explicitly penalizes overfitted models (it places a large
penalty if pixels with similar input features map to very dif-
ferent SIF). As shown in Figure 7, having a smoothness loss
term tends to stabilize the fine-resolution losses later in the
training process, and prevents them from getting much worse.

We then investigate varying the strength of the smoothness
loss λ (fixing τ = 0.5); the results are shown in Table 5.
When λ = 0 (no smoothness loss), the performance is al-
ready quite good, likely because early stopping is enough to
yield a well-regularized model. Increasing λ can slightly im-
prove performance on the fine-resolution validation set, and
we find that the model performs well over a wide range of λ
up to 2. When λ gets too high, model performance degrades
– having too much weight on the smoothness loss encourages
the model to output similar predictions everywhere.

Finally, we check how robust our model is to changes in
τ , the “spread parameter” in the smoothness kernel (fixing
λ = 0.5). The results are shown in Table 6. The model
performs well over a wide range of τ , from 0.1 to 100. A high
value of τ means that the similarity function decays towards
0 quickly, so it is rare for pixels to be considered similar; the
effect is similar to removing the smoothness loss.

λ NRMSE
(fine val pixels)

0 0.185
0.01 0.186
0.1 0.184
0.3 0.182
0.5 0.182
0.7 0.182
1 0.182
2 0.187
5 0.197
10 0.208
100 0.261

Table 5: Impact of changing λ (smoothness loss weight)

τ NRMSE
(fine val pixels)

0.01 0.213
0.1 0.187
0.2 0.183
0.3 0.182
0.5 0.182
0.7 0.182
1 0.183
10 0.185
100 0.186

Table 6: Impact of changing τ (spread parameter in smoothness loss)



Figure 7: Losses over time with smoothness loss. Note that the
red/orange lines are a lot flatter in later epochs, indicating that the
fine-resolution performance does not degrade as much due to over-
fitting.

D Rationale Behind Smoothness Loss

To motivate the design of the smoothness loss, we sample
random pairs of pixels of each land cover type. At different
ranges of input (reflectance) similarity, we show the distri-
bution of SIF differences in Figure 8. These plots are for
soybean, but the trend holds generally.

For pixels with low input similarity (top left), SIF varies a
lot. But for pixels with high input siimlarity (bottom right),
the differences in SIF are much smaller. This demonstrates
that pixels that are similar in input features are also likely to
have similar SIFs. Thus, for pixels with similar input features,
the model should be penalized if it outputs SIF predictions
that are too different – this indicates overfitting.

E Dataset Summary

Table 7 summarizes the input features used, and Table 8 sum-
marizes the SIF datasets used. For SIF data, we use the CFIS
dataset [Frankenberg et al., 2018] for fine-resolution mea-
surements (as well as aggregated coarse-resolution measure-
ments), and the OCO-2 dataset [Sun et al., 2017] for addi-
tional coarse-resolution measurements.

Dataset # vars

Landsat surface reflectance 8
Blue, green, red, near infrared, etc.

FLDAS land data 3
Rainfall, temperature, radiation

CDL land cover types (binary masks) 11
Corn, soybean, grassland, forest, etc.

Table 7: Summary of input features used

Figure 8: Distributions of SIF differences, between pixels of varying
similarity levels

Dataset Resolution # 3km labels in train set
CFIS 30 m 712

OCO-2 3 km 1390

Table 8: Summary of SIF datasets used

F List of Features
Here is a full list of input features used in our tiles. We
downloaded Landsat and Cropland Data Layer features from
Google Earth Engine, and the FLDAS features from NASA
Earth Data portal.2 Each 30m pixel has a value for each of
these features.

Landsat surface reflectance [Masek et al., 2006]:

1. Ultra blue surface reflectance (435-451 nm)

2. Blue surface reflectance (452-512 nm)

3. Green surface reflectance (533-590 nm)

4. Red surface reflectance (636-673 nm)

5. Near infrared surface reflectance (851-879 nm)

6. Shortwave infrared 1 surface reflectance (1566-1651
nm)

7. Shortwave infrared 2 surface reflectance (2107-2294
nm)

8. Missing reflectance mask (1 if reflectance data is miss-
ing, e.g. due to cloud cover)

FLDAS land data features [McNally et al., 2017]:

2https://disc.gsfc.nasa.gov/datasets/FLDAS NOAH01 C GL
M 001/summary?keywords=%22MERRA-2%22

https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary?keywords=%22MERRA-2%22
https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary?keywords=%22MERRA-2%22


1. Rainfall flux (kg m-2 s-1)

2. Surface downward shortwave radiation (W m-2)

3. Surface air temperature (K)

Cropland Data Layer land cover types [NASS, 2016]:

1. Grassland/pasture

2. Corn

3. Soybean

4. Deciduous Forest

5. Evergreen Forest

6. Developed/Open Space

7. Woody Wetlands

8. Open Water

9. Alfalfa

10. Developed/Low Intensity

11. Developed/High Intensity

G Data Filtering
We filter our dataset to exclude pixels and tiles with insuffi-
cient or noisy data. For CFIS SIF labels, geographic coverage
is extremely limited (as the measurements were taken from an
airplane), so most tiles only have SIF labels for some pixels.
As a geographic coverage requirement, we only include 3×3
km tiles that contain at least 1000 pixels with at least 1 CFIS
measurement. Our models are trained to predict the average
SIF over the pixels with CFIS data, rather than over all pixels
within the tile.

At evaluation time, we compare our algorithms’
fine-resolution SIF predictions with the ground-truth
CFIS SIF labels at different resolutions, including
{30, 90, 150, 300, 600} meters. To reduce measurement
noise in the fine-resolution SIF labels, we only evaluate on
small pixels that have at least 30 soundings (observations)
and have SIF > 0.1 (because low SIF values are difficult to
measure accurately). In the next section, we show the impact
of varying the number of soundings; the more soundings a
pixel has, the more reliable the SIF label should be, since
random noise is reduced through averaging. At resolutions
of greater than 30 meters, we also require that 90% of the
30m pixels within the larger pixel have at least 1 CFIS
measurement.

For OCO-2 SIF, we remove tiles that have less than 3
soundings, and tiles with SIF below 0.1.

Also, we remove tiles where more than 50% Landsat pix-
els are missing or unreliable (as defined by the Landsat QA
band), since in this case there is not enough data to accu-
rately predict the entire-tile SIF. (Also, Landsat pixels that are
near cloudy areas tend to be noisy.) We removed tiles where
less than 50% of the tile is covered by one of the common
land cover types we use (that make up more than 1% of our
dataset).

Soundings Ridge NRMSE CS-SUNet NRMSE
(fine train pixels) (fine train pixels)

1 0.261 0.242
5 0.248 0.230
10 0.241 0.223
20 0.212 0.190
30 0.203 0.178

Table 9: Impact of changing the minimum number of soundings.

H Impact of data quality (number of
soundings)

As SIF observations are noisy and contain a lot of mea-
surement error, we analyze the impact of this by compar-
ing performance against the minimum number of soundings
per pixel. If a pixel has more soundings (observations), its
noise should be reduced through averaging (due to the Cen-
tral Limit Theorem). The results are shown in Table 9.

As we increase the number of soundings and thus reduce
measurement error, performance steadily improves, indicat-
ing that data noise is a significant issue in evaluation. We
mitigate this by only evaluating on pixels with at least 30
soundings to reduce noise in the labels, but our results may
still be impacted by data noise.

I Training Details
We train on one NVIDIA Tesla V100 GPU with 16GB mem-
ory, on the Linux CentOS 7 operating system. For CS-SUNet,
training a model for 100 epochs takes roughly 45 minutes.
We used the following libraries with Python 3.7: Matplotlib
3.3.4, Numpy 1.18.1, Pandas 1.1.3, PyTorch 1.7.0, Scikit-
Learn 0.24.1, Scipy 1.4.1. For all methods that involve ran-
domness, we report the average and standard deviation using
three random seeds: {0, 1, 2}.

For the baseline methods, we did a grid search over hy-
perparameters, and chose the configuration that performed
best on the fine-resolution validation set. For Ridge Re-
gression, we selected the regularization parameter α from
{0.01, 0.1, 1, 10, 100, 1000, 10000}; we chose α = 100.
For Gradient Boosting Regressor, we selected the maximum
number of iterations from {100, 300, 1000}, and the maxi-
mum depth of the tree from {2, 3, None}. We chose 100
iterations and max depth of 2. For Random Forest, we
selected the number of trees from {10, 30, 100, 300, 1000}
and the max features per split from {2, 5, None}; we se-
lected 300 trees, and set max features to 5. For the fully-
connected artificial neural network, we selected hidden layer
sizes from {(100), (20, 20), (100, 100), (100, 100, 100)}, ini-
tial learning rate from {10−2, 10−3, 10−4}, and set the max-
imum number of iterations to 10,000. We chose hidden layer
sizes of (100, 100, 100) and an initial learning rate of 0.001.

For CS-SUNet, Pixel NN, and Vanilla U-Net methods, we
used the AdamW optimizer and a batch size of 128. Then we
did a hyperparameter search, considering learning rates from
{1e-4, 3e-4, 1e-3} and weight decay from {0, 1e-4, 1e-3}.
We only tuned based on random seed 0. For Pixel NN, as well



as “U-Net fine supervision”, we chose learning rate 1e-3 and
weight decay 1e-3. For the Vanilla U-Net, we chose learning
rate 1e-4 and weight decay 0. (Note that for the Vanilla U-
Net, we used the model at epoch 100; we did not use early
stopping.) For CS-SUNet, we chose learning rate 3e-4 and
weight decay 1e-4.

For CS-SUNet’s smoothness loss, we considered values of
τ (spread) from {0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 10, 100} and
λ (weight) from {0, 0.01, 0.1, 0.3, 0.5, 0.7, 1, 2, 5, 10, 100}.
We found that τ = 0.5 and λ = 0.5 gave the best result
out of the combinations we tried, although there were many
similarly good options. (Coincidentally, setting τ and λ to be
equal seems to work well.)

In terms of model architecture, we used a smaller version
of U-Net with 2 downsampling and 2 upsampling blocks,
with {64, 128, 256} hidden units. We start with a 1x1 con-
volution for a pixel encoder, followed by a rectified linear
unit (ReLU), and then 2 downsampling blocks. Each down-
sampling block consists of the following sequence: (2 × 2
average pooling, convolutional layer with filter size 3, ReLU,
convolutional layer with filter size 1, ReLU). Note that reduc-
ing the second convolutional layer’s filter size to 1 reduces the
receptive field of each pixel and ensures better localization.

We use 2 upsampling blocks; each involves upsampling
the feature map, and then the sequence: (convolutional layer
with filter size 3, ReLU, convolutional layer with filter size 1,
ReLU). Finally, we concatenate the output feature map with
the feature map from the higher-resolution layer in the con-
tracting path.

J Effect of batch normalization
Overall, we found that batch normalization actually made re-
sults slightly worse, and made training more unstable. To
confirm this, we tried multiple learning rates with and with-
out batch normalization. We used a larger batch size of 256
to make the batch statistics more stable. Even still, removing
batch normalization improved performance. Batch normal-
ization does allow us to use higher learning rates [Bjorck et
al., 2018], but this does not improve results.

Learning rate No batch norm With batch norm
(fine val NRMSE) (fine val NRMSE)

1e-4 0.183 0.204
1e-3 0.183 0.193
1e-2 0.194 0.204
1e-1 0.310 0.204

Table 10: Effect of batch normalization

We hypothesize that this is because our problem actually
depends on the absolute intensity values of the input images.
Batch normalization introduces significant noise by scaling
by the mean and standard deviation of each batch, which
removes information about the raw intensities. This phe-
nomenon is also reported in a blog post.3 This is fine for

3https://towardsdatascience.com/pitfalls-with-dropout-and-
batchnorm-in-regression-problems-39e02ce08e4d

tasks with natural images, which tend to be more invariant to
shifts in light intensity and color. However, when monitoring
vegetation, the absolute intensities matter; for example, tra-
ditional vegetation indices are simple mathematical formulas
based on the absolute intensity values of different channels in
these remote sensing images [Bannari et al., 1995].

K Data and Code Availability
We intend to submit an expanded version of this paper to a
journal, such as in the field of remote sensing. After the jour-
nal article is published, we plan to make the entire dataset and
codebase publicly available. All of the raw data used already
comes from publicly available sources.

L Evaluation Metrics
We evaluate our model on fine-resolution pixels with at least
30 soundings. We use two standard regression metrics: nor-
malized RMSE and R2.

The RMSE is the square root of the mean squared error
between the prediction and the true value:

RMSE =

√∑
i(yi − ŷi)2

N

where yi is the true SIF for pixel i, ŷi is the model’s pre-
dicted SIF for pixel i, and N is the total number for pixels
in the evaluation set. In this paper, we further divide RMSE
by the average SIF across the train dataset, to get normalized
RMSE (NRMSE).

R2 is a measure of how much the variation in the data can
be explained by the model predictions. Formally,

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2

where ȳ is the average SIF across the entire test dataset.
The top of the fraction is the sum of the squared residuals
(difference between true SIF and model prediction). The bot-
tom is the total sum of squares (of the difference between the
true SIF and the average SIF across the test dataset), which is
proportional to the overall variance of the test data.
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