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1 Problem Statement

Edit embedding has been a research topic of interest in theoretical computer science [2]. The edit
distance (or Levenshtein distance) between strings x and y is defined to be the minimum number
of edit operations (insertion, deletion and substitution) to transform string x into y. Edit distance is
an important metric for many applications, including spell checking, correction systems for optical
character recognition, and clustering genetic sequences. Unfortunately, computing edit distance for
long strings is computationally expensive, since best known exact algorithms for computing edit
distance run in nearly quadratic time (in the length of the strings) [1]. Thus, it is generally infeasible
to compute the edit distance between every pair of strings in a large dataset, even though that would
be very useful for various clustering applications.

Instead, we would like to learn a transformation f which maps one string (s) to another (a = f(s)),
such that for any pair of sequences (si, sj), the Hamming distance between the transformed strings
(dH(f(si), f(sj)) is close to the true edit distance between the original strings (de(si, sj)). To do
this, we aim to minimize the following non-differentiable 1 loss function:

L =
1

|P |
∑

(si,sj)∈P

||dH(f(si), f(sj))

de(si, sj)
− 1||2 (1)

2 Model

In this section, we describe our models for the edit embedding problem.

2.1 Sequence-to-Sequence (Seq2Seq) Architecture

Existing edit embedding algorithms designed by computer scientists try to find a mapping f that
transforms input sequence s into the output sequence a. A recent one is called CGK embedding
[2], which constructs a from s by repeating bits of s in a randomized way. The algorithm is briefly
described as follows, and is illustrated in Fig 1

• initialize index i = 0 for s ∈ SLs and j = 0 for a ∈ S3Ls , and a random binary matrix
R ∈ {0, 1}|S|×3Ls . S is the alphabet set, such as binary {0, 1} or DNA {A, T,C,G}.

• update a[j] by a[j]← s[i]

• update i by i← R[s[i]][j] and j by j ← j + 1

Since the CGK embedding already provides a (randomized) function to transform arbitrary strings
into new strings such that the Hamming distance between the new strings is a good approximation
of the edit distance between the original strings, we can start off by training a neural network in a
supervised way to learn a function that imitates the CGK embedding. By first training the neural
network to imitate a theoretically-sound edit embedding approach, we hope to provide a good

1We need to do thresholding in order to obtain a from s.
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Figure 1: A CGK example where input/output consist of DNA alphabets. When i equals 1, the
source x[i] = A is copied to the target f(x)[j], j = 1. Since R[j][f(x)[j]] = 0, we proceed
j = j+1 = 2 but keeps i. So next f(x)[j], j = 2 is still A, copied from x[i], i = 1. Now the rand bit
R[j][f(x)[j]] = R[2][A] = 1, we proceed j = j + 1 = 3 and i = i+ 1 = 2. So next f(x)[j], j = 3
is C, copied from x[i = 2]

initialization for the model before applying reinforcement learning. We naturally consider applying
recurrent neural network related architectures for sequence problems. In particular, we consider f to
be a sequence-to-sequence (Seq2Seq) architecture (based on e.g. LSTM [5]) that’s been widely used
in machine translation [14][3], as illustrated in Fig 3.

Figure 2: Seq2Seq architecture. The encoder network maps an arbitrary-length sequence to a fixed-
length embedding vector, and the decoder network decodes that embedding into a new sequence. In
our scenario, we segment our sequence s into blocks and view them as the input words. We generate
output words corresponding to the CGK embedding.

2.2 Siamese Network Architecture (SNA)

The CGK embedding may not be the optimal transformation to minimize the loss; we may be able
to learn a better transformation. To approximate de(s1, s2) by dH(a1, a2), we consider training a
Siamese network architecture (SNA) [8][9] with two copies of f for minimizing a certain loss, as
illustrated in Fig 3. Note such an architecture may or may not contain a decoder2. We think the model
with a decoder is more reasonable because the input sequence lengths can vary.

For each training example, we simultaneously run two different strings forward through a shared
network to obtain embeddings for each string. Then, the loss can be calculated as a function of
both embeddings, and errors backpropagate through a shared network. In our situation, the loss
function L in Eq. 1 is non-differentiable, because the Hamming and Edit distances between strings
are discrete-valued. Thus, a straightforward supervised approach using standard backpropagation
shall not work. However, reinforcement learning algorithms (Sec 3) such as the REINFORCE policy

2If there’s no decoder, the loss is based on the input sequences si1, si2, and their embedding vectors vi1, vi2
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Figure 3: Reinforcement Learning via a Siamese Network Architecture (SNA)

gradient algorithm) allow us to train networks that maximize a reward, even when the reward function
is non-differentiable. In particular, we can treat the SMA as agent, the pair of input sequences (si, sj)
as state, the output embedding (ai, aj) (non-thresholded, softmax) as actions, and −L as rewards.
These methods have been recently explored in dialogue generation [7], image captioning [12], text
summarization [10] and question answering [15].

3 Reinforcement Learning (RL) Algorithms

3.1 Monte Carlo REINFORCE

The REINFORCE algorithm directly differentiates the policy π(ât|st; θ) with respect to the policy’s
parameters θ. In our problem, our actions do not influence future states, so we can drop the time-step
t. The expected reward of any particular time step can be written as

η(θ) = Eâ∼π(a|s,θ)[R(s, â)]

where R(s, â) is the reward computed based on the edit distance between the input sequences
s = (si, sj), and the Hamming distance between the transformed sequences â = (âi, âj). π(â|s, θ)
is the probability of producing action â from the neural network parameterized by θ.

The gradient of the expected reward can be simplified to

∇θη(θ) = Eâ∼π(â|s,θ)[R(s, â)∇θ log π(â|s, θ)]

We can approximate this expectation by simply sampling a single action â from the policy. Now we
can adjust the policy parameters in the direction in which the expected reward will increase using
policy gradient. This gives us the following algorithm (based off Monte Carlo REINFORCE).

• Sample K states (pairs of input sequences), s1 . . . sK .

• From each state sk, sample T actions (pairs of output sequences), âk1, . . . âkT from the
current policy π(â|sk, θ). For simplicity, we may use T=1.

• The gradient is calculated by:

∇θη(θ) ≈ 1

K

1

T

T∑
t=1

K∑
i=1

[R(sk, âkt)∇θ log π(akt|sk, θ)]

• Update the network parameters by:

θ ← θ + α∇θη(θ)
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3.1.1 Self-critical training

The expected gradient computed using mini-batches under the REINFORCE algorithm usually has
very high variance. Thus, there have been many attempts to normalize the reward by some baseline,
typically an estimate of future rewards. For this problem, we adopt the Self-Critical Sequence
Training approach, where we normalize our rewards by the rewards observed by the test-time system.
At test time, the decoder greedily selects the best action at each time step, whereas during training,
the decoder samples actions from the probability distribution induced by the model. If the proposed
sampled action receives higher reward than the current action, we shift the model’s parameters to
output that action more frequently.

For the above equations, we replace R(sk, âkt) with R(sk, âkt) − R(sk, â
∗), where R(si, â

∗) is
the reward obtained by the model using the test time inference algorithm (greedy decoding), and
R(si, âkt) is the reward obtained by the proposed action that was sampled from the network.

3.2 Policy Gradients with Parameter-Based Exploration (PGPE)

As suggested, we’ve surveyed another method called Policy Gradients with Parameter-Based Ex-
ploration (PGPE). It’s firstly proposed in [13] in order to sample directly in parameter space for
lower-variance gradient estimates. In [4] it’s claimed to have better performance compared with
evolution strategies (e.g. ES and CMA-ES algorithms) on training a Multi-Dimentional Recurrent
Neural Network for a simpler version of Go game.

To understand PGPE, let’s consider our original goal is to find parameter θ (e.g. SNA parameter) that
maximizes J(θ) =

∫
H
p(h|θ)r(h)dh by calculating ∇θJ(θ) (h represents an episode and r(h) is

related reward) and updating θ via gradient ascent.

Instead of calculating θ directly, PGPE introduces another parameter ρ that determines the dis-
tribution of θ. Consequently the problem now becomes to find ρ that maximizes J(ρ) =∫

Θ

∫
H
p(h, θ|ρ)r(h)dhdθ by calculating ∇ρJ(ρ) and updating ρ via gradient ascent. It can be

shown that

∇ρJ(ρ) ≈ 1

N
ΣNn=1∇ρ log p(θ|ρ)r(hn) (2)

Here ρ is updated every N episodes. In our actual implementation, we consider one training batch
as an episode. Typically PGPE assumes ρ = {ρi = (µi, σi)} and each θ(n)

i - the i-th parameter at
episode n of θ has normal distribution with mean µi and deviation σi. By this assumption, we can
directly calculate∇ρ log p(θ|ρ) in Equ 2 by

∇µi
log p(θ|ρ) =

θ
(n)
i − µi
σ2
i

(3)

∇σi log p(θ|ρ) =
(θ

(n)
i − µi)2 − σ2

i

σ3
i

(4)

This implies we can update ρ first via gradient ascent and then sample agent (network) parameter θ,
without doing backpropagation of neural network. In our actual implementation, we also include a
baseline, as suggested in Algorithm 1 in [13]. The procedure is described as follows:

• Initialize ρ = {(µi, σi)}. We initialize µi based on pretrained θi and σi from uniform
distribution of a small range.

• Sample N episodes (one episode corresponds to one training batch). For each n-th episode,
we sample θ(n) from ρ where each θ(n)

i ∈ θ has normal distribution with mean µi and
deviation σi. Based on θ(n) of this episode, we calculate∇ρ log p(θ|ρ) explicitly using Equ
3, Equ 4; We also obtain from the training batch the input states s1 . . . sK and corresponding
actions a1 . . . aK , and we calculate rewards r(hn) from them.

• Note: (1) We maintain a smoothed baseline b where b is updated per batch by b← 0.9b+
0.1r(hn). We then apply r(hn) ← r(hn) − b before updating meta param ρ. (2) We’ve
tried several r(hn) functions as will be described in more detail in Section 4.4.
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• By collecting∇ρJ(ρ) and r(hn) from N episodes, we then update µi and σi via gradient
ascent using Equation 2.

• Repeat till convergence of objective function (e.g. J(ρ))

4 Evaluation

4.1 Data Preparation

We generate synthetic binary data for train and evaluation.

For the Seq2Seq model, each training or evaluation sample is a pair of (si, ai) where i is the sample
index, si represents a binary input sequence and ai represents the CGK transform of si (also a binary
sequence). In particular, the CGK generation is briefly described in Section 2.1 and is illustrated in
Fig 1.

For the RL model where the agent is a Siamese Network, each training or evaluation sample is a
triplet of (si1, si2, de(si1, si2)). Binary sequences si1 and si2 can be independent (e.g. dissimilar
pair) or dependent (e.g. similar pair where si2 is generated by passing si1 through an indel channel
with small insertion, deletion and substitution error rate). de(si1, si2) represents the edit distance
between si1, si2.

4.2 Seq2Seq Evaluation

To evaluate the Seq2Seq model, we first train the model using 10K pairs of {(si, ai)} where
ai = fCGK(si). Source sequence si has length 50 and target sequence ai, due to randomness of
CGK embedding, has variable length ranging up to 150. As illustrated by Fig 3, the input sequences
are segmented into blocks of length 5 and each block (e.g. a word) is represented by an integer id, and
is translated into an embedding vector of size 100. The training aims to minimize the cross-entropy
loss between predicted sequences {âi} and reference sequences {ai}. We update Seq2Seq parameters
using Adam optimizer with learning rate 0.001, at every batch with batch size 100. The training lasts
5 epochs.

Every time we update Seq2Seq parameters during training, we also evaluate performance using
2K pairs of samples. Notice that the main difference between training and evaluation is that at
training, decoder takes reference ai as input while at evaluation the decoder takes previous hidden
layer output e.g. âi[t− 1] as input for the prediction of âi[t]. The metric for evaluation mainly checks
the Hamming distance between predicted sequence âi and reference sequence ai.

Fig 4 shows the initial evaluation of the performance trend, based on 1 layer LSTM for both encoder
and decoder. In the first subplot (x-axis represents batch iterations and y-axis represents objective
loss values), the training cross entropy steadily decreases. The training Hamming loss decreases from
60 to around 40, meaning the predicted CGK embedding âi = f(si) has Hamming distance of about
40 from the true CGK embedding ai. When the embedding length is about 100 to 150, this is about
26%− 40% mismatches. The validation Hamming loss is very high initially and reaches around 50
later, meaning about 33%− 50% mismatches. The second and third subplots indicate that as training
proceeds, the average predicted length of âi converges to the target length of a.

We also improve the model by using BiLSTM and attention mechanism. This further reduces the
training cross entropy loss to around 20. However, the validation Hamming loss is not reduced. We
also tuned number of epochs, embedding size and block length, they are helpful to reduce entropy loss
further (e.g. cross entropy loss around 1) but not helpful to decrease validation Hamming loss. This
suggests that Seq2Seq model does not seem to generalize to learn CGK embedding well, however as
we can see next, it is helpful to separate similar and dis-similar input sequence pairs.

The Seq2Seq model is useful as a pretrain step, before we train SNA using RL. To see this, Fig 5
illustrates the SNA performance without reinforcement learning. The left subplot is the histogram of
Hamming distance between CGK transformed pairs. The orange curve is where original input pairs
are similar (as described in Sec 4.1 and thus the Hamming distance tends to be small, whereas the
blue curve is where original input pairs are dis-similar and thus the Hamming distance tends to be
large. It is clear that these two groups are well seperated. The right subplot in Fig 5 is the histogram
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Figure 4: Initial evaluation of Seq2Seq architecture

Figure 5: Histogram of deviation of hamming distance between predicted sequences from edit
distance between input sequences

of Hamming distance between Seq2Seq transformed pairs. The Seq2Seq learned models separates
the similar and dis-similar input sequence pairs to some extent, but not as well as CGK.

We also check the histogram of R(s, a) = dH(âi1, âi2)/de(si1, si2) − 1, the deviation of the
transformed Hamming distance from the original edit distance, for both CGK and our SNA. But the
related orange and blue curves are not well-separated. So this may not be a good metric to intuitively
see the clustering effect. This motivates us to try additional reward functions for RL models.

4.3 REINFORCE Evaluation

We used the REINFORCE algorithm to attempt to improve the pre-trained policy. We plot the results
(reward over time) of a run in figure 6.

Figure 6: Reward (−(dH(a1,a2)
de(s1,s2) − 2)2) over time
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The reward does improve to some extent, but the training is unstable and there is a lot of noise. For
example, the results are highly sensitive to the model’s initialization and random choices. Sometimes,
the model outputs the same sequence for every single input, which is a common failure mode for
LSTMs. Even when it avoids that, the algorithm generally converges to a poor policy, as shown in
figure 7. The rewards incurred in the end are around −2 to −2.5, which does not do a great job of
distinguishing between similar versus different sequence pairs:

Figure 7: Histogram of Hamming distance between predicted sequences for independent pairs (blue)
and similar pairs (orange)

As shown in figure 7, the learned policy does not do a good job of distinguishing similar sequence
pairs from different sequence pairs. If the input sequences are different, the model is somewhat
more likely to result in a high Hamming distance between the transformed sequences, but it is not
guaranteed.

4.3.1 Modifications to Reward Function

Unfortunately the reward function −(dH(a1,a2)
de(s1,s2) − 2)2 appears to be difficult to fully optimize. There

are extremely few policies that achieve high enough reward to approximate the edit distance with
reasonable accuracy. We tried modifying the reward function to explicitly favor separation between
similar pairs and independent pairs in the transformed sequences, as follows:

R(s, a) =

{
−|dH(a1, a2)− de(s1, s2)| if sequences are similar
dH(a1, a2) if sequences are independent

If the sequences are similar (low edit distance), the agent is encouraged to output strings whose
Hamming distance is similar to the edit distance. Otherwise, if the sequences are independent, the
agent is encouraged to output strings that are as dis-similar as possible. This is also a difficult
reward function to train on, as the agent is rewarded very differently depending on whether the input
sequences were similar or different. The Hamming distances between the transformed sequences are
plotted in figure 8

Figure 8: Histogram of Hamming distance between predicted sequences for independent pairs (blue)
and similar pairs (orange)

The algorithm is more likely to map similar input sequences to similar transformed sequences, and
different input sequences to different transformed sequences, which is a plus. However, there is still a
high degree of noise, and the resulting embedding does not approximate edit distance at all. Also, the
training was again unstable and most runs produced worse results.

4.4 PGPE Evaluation

To evaluate PGPE, we mainly train the RL framework and check how PGPE’s rewards vary and how
applying PGPE affects the clustering of similar and dis-similar input pairs.
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To train PGPE, we initialize the meta-parameter ρ = {ρi = (µi, σi)} by initialize µi with pretrained
θi and initialize σi with uniform distribution with range [0, 0.01]. If µi is randomly initialized or σi
range is large, the similar and dis-similar pairs (e.g. the orange and blue curves in Fig 5) will not be
distinguished. In addition, a large σi range or a large learning rate will make PGPE training unstable
since negative σi will occur3

Unfortunately, PGPE does not show an improving reward (e.g. as defined in Fig 3) or a better
separation between similar/dis-similar input pairs. To remedy this, we’ve tried to apply two other
reward functions. One is per sample reward R2 = 1similar × (−dH) + 1dis−similardH which
encourages small hamming distance between similar pairs and penalizes large hamming distance
among dis-similar pairs. Fig 9 shows how applying PGPE affect this reward over iterations. As
we can see, the reward of using PGPE is only slightly better than turning PGPE off. And it does
not seem to improve the cluster separation. The other reward we tried is calculated per batch,
R3 = 1

|Pdis−similar|
∑
si∈Pdis−similar

dH(ai)− 1
|Psimilar|

∑
si∈Psimilar

dH(ai) - we hope to enlarge
the length between two clusters. The performance is similar as R2.

Figure 9: PGPE effect on reward R2. x-axis represents episode iteration and y-axis is average reward
R2 per batch, with a smoothing factor 0.9

We speculate that perhaps there are too many parameters of the SNA model, so we also tried to reduce
size of network parameter θ by using smaller blocklen, embedding size, or LSTM cell size. This
hurts Seq2Seq performance at the very beginning and does not bring a separation between clusters.

5 Summary and Future Work

We attempted to apply reinforcement learning along with a Siamese Seq2Seq neural network ar-
chitecture to the difficult problem of learning an edit embedding such that the Hamming distance
between two embeddings approximates the edit distance between the original sequencesWhile the
model performs better than chance, it does worse than the pre-existing CGK embedding in terms
of distinguishing similar sequences from different ones. We were also unable to get reinforcement
learning algorithms to produce a policy that produced effective edit embeddings. It was still a very
interesting approach to try though, and we list a few suggestions for future work.

First, it may be interesting to try Natural Policy Gradient [6], which can be helpful in escaping from
local optima. However, inverting the Fisher Matrix is computationally expensive when the number of
parameters is large. Secondly, it is known that generating sequences using reinforcement learning is
difficult due to the enormous action space. We could try to mitigate this through incremental learning
and the MIXER algorithm [11]; the approach is to start by training a model based on cross-entropy
loss (using the ground-truth CGK embedding as inputs to the decoder), and then gradually allow the
decoder to make use of its own predictions when decoding. Finally, we could also try running our
algorithms on larger and different datasets, especially real DNA datasets where we may be able to
exploit structure in the data (instead of having sequences sampled uniformly at random).

3We flip σi when it contains negative values. Another suggested method is to try to update σ′
i = logσi first

and sample θi from N(µi, exp(σ
′
i)) to avoid the negative value issue.
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