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Background
With rapid advances in sequencing technologies, large single cell transcriptomic (SCS) datasets 
are becoming abundant and larger than ever before. In a recent work, 10x Genomics 
demonstrated their ability to sequence over a million single cells. This has raised the need to 
scale up the unsupervised learning methods for SCS datasets, most of which aren’t designed for 
such large datasets.

The main problem we focused on was a variant of non-negative matrix factorization called 
'Sampled Matrix Factorization', which is used to estimate the true transcriptomic states of 
cells, given heavily sampled data of how much each gene is expressed in a particular cell. In 
particular, we are interested in efficient online algorithms that can scale well for large datasets.

Non-negative matrix factorization is a well-studied problem that has frequently been used as a 
dimensionality-reduction technique. Given a data matrix X, the goal is to factor X into two 
low-rank non-negative matrices (M and W) such that some loss function is minimized.

Many matrix factorization approaches assume that the data is drawn from a Gaussian 
distribution, which is not the case for single-cell RNA-seq data. In our case, we explicitly assume 
that our observed data matrix X is sampled from SamplingDistribution(MW), where 
SamplingDistribution is usually Poisson or Negative Binomial. In this problem, we minimize the 
negative Poisson log likelihood:

The loss function is non-convex for both matrices, but it is convex if you fix one matrix at a time. 
Thus we can use block coordinate descent: fix W and update M to decrease the loss function, 
and then fix M and update W. Keep alternating until the loss function converges.

For each matrix update, we tried multiple optimization methods.

Basic approach

Algorithms

Comparison of methods

We implemented six optimization approaches for updating the matrices.

Gradient Descent is the most straightforward approach: we simply find the direction of the 
likelihood’s gradient and adjust the row or column in that direction.

Stochastic Gradient Descent approximates the gradient using a single data point (a single 
entry in our observed data matrix in our case).

Stochastic Gradient Descent with mini-batching approximates the gradient using a small 
batch of data points (100 in our case).

SVRG (Stochastic Variance Reduced Gradient) attempts to reduce the inherent variance in 
stochastic gradient descent. We keep a snapshot of the weight vector after every m iterations, 
which approximates the current weight vector. We also store the average gradient over the 
snapshot weights.

Then, when we update on a new data point, we adjust the point’s gradient by how this point’s 
gradient (on the snapshot weights) differs from the average gradient (on the snapshot weights):

AdaGrad is an adaptive gradient method which uses feature-specific learning rates which 
incorporate the past geometry of the data.

NoLip is a specialized algorithm for non-Lipschitz functions. This method utilizes a different 
defintion of smoothness using Bregman distance and demonstrates that for certain classes of 
non-lipschitz functions (including our example) it is possible to construct gradient update rules 
with sub-linear convergence rates.

Choosing step sizes

Discussion

Downstream applications
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Multiple passes

We benchmark the various algorithms on synthetic data sets of sizes 100, 500 and 1000. In each case, the 
optimization procedure involves first using 5 passes through the data to optimize for W and then using 5 
passes through the data to optimize for M. We created plots tracking the cost function against the number of 
iterations and the runtime.

We experimented with changing the number of passes through the data set of updating M before switching 
to updating W, and so on. Here is an example with a 500 x 1000 matrix (and SGD).

It seems like performing 5 or 10 passes (instead of a 
single pass) through the data set for each update to 
M/W yields a slightly faster convergence rate. This 
could be because if we want to update W in a useful 
way, we need a good estimate of M (which is fixed).

Iterations Runtime

(Udell et al, 2016) suggests a more nuanced rule for selecting step sizes that allows for different step sizes 
per row/column. Every time we update a row or column, we check if the objective function (cost) increased or 
decreased. If the cost decreased, we’re moving in the right direction, so we can increase the step size. 
However, if the cost increased, we jumped too far, so we should decrease the step size for this row/column.

As shown in the graphs below, using this adaptive method yields faster convergence (in SGD and SVRG) 
than sticking with a single step size throughout. This optimization was used above.

(SGD, 500 x 1000) (SVRG, 100 x 1000)

In terms of the number of iterations, the stochastic methods (including SGD, SVRG, and 
AdaGrad) generally converged faster. SGD reached good results after just several iterations, 
which was helped using an adaptive method of selecting step sizes.

Surprisingly, regular SGD seemed to do slightly better than SVRG (which explicitly attempts 
variance reduction) and AdaGrad (which implements feature-specific learning rates). Part of this 
could simply be due to our choice of learning rates, and because our implementation of SGD 
already adjusts learning rates per feature, based on their success in decreasing the cost. It also 
seems like the data is well-behaved enough that variance reduction becomes less necessary.

However, in terms of the runtime, the picture is much more mixed. Even though the stochastic 
methods converge in a small number of iterations, each pass through the data set takes much 
longer with the stochastic methods. This may be because the batch methods take advantage of 
large matrix operations when computing gradients, which are more optimized on a hardware 
level than many small operations. The NoLip method seems to converge in the shortest amount 
of time, and ordinary Gradient Descent also does well. However, it seems like all the algorithms 
perform similarly against runtime.

A potential downstream application of our matrix factorization approach is dimensionality 
reduction. Our method to perform dimensionality reduction is explained below. 

We now demonstrate this method on a synthetic dataset with a branching tree structure (as seen 
below on unsampled data). We first obtain factorized matrices using different optimization 
methods and perform dimensionality reduction (see results below).


