
Scaling up sampled matrix factorization for
single-cell transcriptomic data

Sumit Mukherjee
Electrical Engineering

University of Washington
Seattle, WA

Joshua Fan
Computer Science & Engineering

University of Washington
Seattle, WA

Abstract

With rapid advances in sequencing technologies, large single cell transcriptomic
(SCS) datasets are becoming abundant and larger than ever before. This has raised
the need to scale up the unsupervised learning methods for SCS datasets, most of
which aren’t designed for such large datasets. Recent work has used a variant of
non-negative matrix factorization (called Sampled Matrix Factorization) to esti-
mate the underlying true transcriptomic states from sampled observed data uti-
lizing the underlying low rank of these datasets. While there has been a lot of
work on developing scalable and online approaches to non-negative matrix factor-
ization, most of these approaches cannot be directly extended to Sampled Matrix
Factorization. Here we focus on identifying potential optimization tools to scale
up Sampled Matrix Factorization for large datasets.

1 Introduction

Figure 1: Illustration of the state estimation process using Sampled Matrix Factorization

A recently surge in development of low-cost large scale single cell sequencing technologies [6,8,10]
have given rise to many large scale single cell transcriptomic datasets. This has led to the devel-
opment of many bioinformatic tools to uncover biological insights about changes in gene expres-
sions during differentiation [7], identification of novel differential regulator genes [14] and new cell
types [15] etc. The main advantages gained from SCS can are: 1) they have large sample sizes which
can improve the accuracy of computational methods designed to study them, and 2) high granularity
information about each single cell helps avoid aggregation of traits leading to better information
about individual cub-groups in these datasets [3].

A common assumption for most general purpose unsupervised learning learning algorithms is the
Gaussian-ness of the data. Several commonly made algorithms such as PCA, tSNE, K-means
clustering etc. either implicitly or explicitly assume that the data belongs to either Gaussian or
t-distribution (or similar smooth continuous distributions). This assumption is however not true for
SCS datasets, where the observed data is typically count valued and closer to Poisson or Negative
Binomial distribution instead. This is because models of the sequencing process [1, 12] suggest

1



that a cell’s true transcript counts are sampled using one of many discrete sampling distributions to
obtain the cell’s observed transcript count. This affects the accuracy of the various general purpose
learning approaches for these datasets.

A potential approach to overcome this issue would be to estimate the true transcriptomic state of the
cells from the observed SCS data. Unfortunately, this problem is computationally infeasible even
with a known sampling distribution for the case when no additional information is available. How-
ever, in case of SCS data, since cells have a few small number of cell types, the true transcriptomic
states can be assumed to be low rank, with the rank bounded by the number of true cell types in
the data. In our recent work we have developed Sampled Matrix Factorization [11] as a method to
utilize this low rank structure to estimate the true transcriptomic state as seen in Figure 1. However,
the current approach relies on general purpose optimization toolboxes to perform the constituent
optimization steps. Unfortunately, this prevents the current method from being scaled up to very
large datasets. For this class we have focused on exploring online optimization approaches to scale
up the problem.

Several optimization routines have been discussed in class, namely Stochastic Gradient Descent
(SGD) [4], Stochastic Variance Reduction (SVRG) [13], AdaGrad [5] etc. to tackle the large scale
online learning problem. These problems have demonstrated benefits in the case of convex cost
functions and also in the case of several non-convex cost functions. However, their relative per-
formances vary based on the problem and here we have compared their efficiencies for our specific
problem formulation. Morevoer, we have benchmarked these approaches against some ’batch’ learn-
ing methods such as proximal gradient descent, mini-batch gradient descent and NoLips [2], which
is a specialized algorithm for non-Lipschitz cost functions. In the coming sections we first formu-
late the Sampled Matrix Factorization problem and explain the different results obtained from our
experiments.

2 Sampled Matrix Factorization

The task of estimating the true transcriptomic state works under the assumption that the true state of
the cells lie in the convex hull spanned by the states of the main cell types [11]. For this problem,
we assume that we have been provided with a matrix of initial means M ∈ Rgenes×k and a data
matrix X ∈ Rgenes×cells. The Sampled Matrix Factorization model assumes that the observed
transcriptomic state of each cell is a discrete sampled version of the true state (this can be any
sampling distribution but here we have focused on the Poisson distribution, since it is a common
assumption for SCS datasets) i.e.

X ∼ SamplingDistribution(Xtrue), where Xtrue = M × w

Xtrue is the matrix of true transcriptomic states of all cells (this is hidden from us) andw ∈ Rk×cells

is the cell type fraction which statisfies the property 1Twi = 1 and wi � 0. These conditions ensure
that each cell’s original state will lie in the convex hull of the cell states of all the different cell
types. The goal is to find the optimal M and w matrices which maximizes the log-likelihood of
the observed data matrix X . Here we note that this problem is unfortunately non-convex for most
sampling distributions but the sub-problems of estimating either M or w with the other matrix fixed
are convex problems for any exponential family distribution. We thus adopt an algorithm similar
to EM or coordinate descent to estimate these model parameters. In the first step we estimate the
mixture parameter while keeping the means fixed as follows:

w = arg min
w

log(Prob(X|M,w,Θ))

subject to
wi � 0, ∀i ∈ [0, 1, ..N ]

Here the cost function is used to describe the log-likelihood of the observed data given the matrices
M , w and any additional statistical parameters Θ. The parameter Θ is distribution dependent and is
the empty set in case of the Poisson distribution. Having performed this step, the following step is

2



to estimate M by solving the following optimization problem:

M = arg min
w

log(Prob(X|M,w,Θ))

subject to
[M ]ij ≥ 0, ∀i, j

The condition [M ]ij ≥ 0 is needed to guarantee that the true transcriptomic state cannot be negative.
These two steps are then performed iteratively till convergence.

Once converged, the columns of w are normalized in order to sum to 1 to ensure the condition
1Twi = 1 is satisfied. This is not enforced during the optimization steps to ensure that cells with
similar transcriptomic profiles but different cell sizes (thereby larger number of total transcripts)
can converge to their respective optimal mixing weights first. The post normalization step then
ensures cells with different cell sizes but with similar transcriptomic expression patterns end up
having similar estimated states. In the case of Poisson distribution, this process can be summarized
as below in Algorithm 1.

Algorithm 1 Sampled Matrix Factorization (Poisson)

function ESTIMATE-STATE(X,M, k,maxiters, ε)
W ← initial (random-positive) matrix of size k × cells
for iter ← 1...maxiters do

Update W to minimize 1T (MW −X ◦ log(MW ))1 , subject to W nonnegative
Update M to minimize 1T (MW −X ◦ log(MW ))1 , subject to M nonnegative
if M and W changed less than ε this iteration then

return M,W
end if

end for
for iter ← 1...cells do

W [:, i] = W [:,i]
sum(W [:,i])

end for
return M,W

end function

For this class project we omit the last normalization step since it is application specific and is com-
putationally cheap to calculate.

3 Optimization methods tested

We implemented six optimization approaches for updating the matrices.

• Gradient Descent is the most straightforward approach: we simply find the direction of the
likelihood’s gradient and adjust the row or column in that direction.

• Stochastic Gradient Descent approximates the gradient using a single data point (a single
entry in our observed data matrix in our case).

• Stochastic Gradient Descent with mini-batching approximates the gradient using a small
batch of data points (100 in our case).

• SVRG (Stochastic Variance Reduced Gradient) attempts to reduce the inherent variance
in stochastic gradient descent. We store a snapshot of the weight vector after every m
iterations, which approximates the current weight vector. Each time we store the snapshot
of the weight vector, we also compute the average gradient over the snapshot weights.

µ̃ = ∆P (w̃) =
1

n

n∑
i=1

∆ψi(w̃)

3



Then, when we update on a new data point, we adjust the point’s gradient by our esti-
mate (based on the snapshot weights) of how this point’s gradient differs from the average
gradient (on the snapshot weights).

w(t) = w(t−1) − ηt(∆ψi(w
(t−1))−∆ψit(w̃) + µ̃)

• AdaGrad is an adaptive gradient method which uses feature-specific learning rates which
incorporate the past geometry of the data.

• NoLip is a specialized algorithm for non-Lipschitz functions.This method utilizes a dif-
ferent defintion of smoothness using Bregman distance and demonstrates that for certain
classes of non-Lipschitz functions (including our example) it is possible to construct gradi-
ent update rules with sub-linear convergence rates.

4 Results

4.1 Convergence rate and run time comparison of different methods

We benchmark the various algorithms on synthetic data sets of sizes 100, 500 and 1000. In each
case, the optimization procedure involves first using 5 passes through the data to optimize for W and
then using 5 passes through the data to optimize for M. We created plots tracking the cost function
against the number of iterations and the runtime. A few representative plots are included (Figures
2-5).

4.2 Discussion

In terms of the number of iterations, the stochastic methods (including SGD, SVRG, and AdaGrad)
generally converged faster. SGD reached good results after just several iterations, which was helped
using an adaptive method of selecting step sizes. Overall, the stochastic methods also seemed to
convege to better cost-function values, which was interesting.

Surprisingly, regular SGD seemed to do slightly better than SVRG (which explicitly attempts vari-
ance reduction) and AdaGrad (which implements feature-specific learning rates). Part of this could
simply be due to our choice of learning rates, and because our implementation of SGD already ad-
justs learning rates per feature, based on their success in decreasing the cost. It also seems like the
data is well-behaved enough that variance reduction becomes less necessary.

However, in terms of the runtime, the picture is much more mixed. Even though the stochastic
methods converge in a small number of iterations, each pass through the data set takes much longer
with the stochastic methods. This may be because the batch methods take advantage of large matrix
operations when computing gradients, which are more optimized on a hardware level than many
small operations. On the other hand, the stochastic methods involve for loops, which can be very
slow. The NoLip method seems to converge in the shortest amount of time, and ordinary Gradient
Descent also does well. However, it seems like all the algorithms perform similarly against runtime.

An advantage of the stochastic methods is that they do not require storing as much information in
memory. While gradient descent requires that the entire W matrix and an entire row of the data
matrix be stored in memory to compute one gradient, stochastic gradient descent only requires one
column of W and one entry of the data matrix. This is a major improvement, which is important
when the datasets become large enough that it is impossible to store the matrices in memory.

4.3 Effect of number of passes through dataset per iteration

At first, all of the algorithms made one pass of the dataset when updating M, then switched to
updating W for one pass, and so on. We experimented with changing the number of passes through
the data set of updating M before switching to updating W, and so on. Figure 6 contains a plot with
a 1000 x 1000 matrix (and SGD). We plotted it so that the x-axis is proportional to the number of
passes through the dataset, to avoid giving an advantage to methods that do more work within one
update to M/W.

Overall, the effect of changing the number of passes per iteration was minimal. It seems like per-
forming 5 or 10 passes (instead of a single pass) through the data set for each update to M/W yields

4



Figure 2: Cost vs # iterations (100 x 1000) Figure 3: Cost vs runtime (100 x 1000)

Figure 4: Cost vs # iterations (1000 x 1000) Figure 5: Cost vs runtime (1000 x 1000)

5



Figure 6: Experimenting with number of updates

a slightly faster convergence rate, but going beyond 5 passes does not seem to produce much further
improvement. This could be because if we want to update W in a useful way, we need a good esti-
mate of M (which is fixed), but we don’t want to waste too much time finding the optimal value of
W if the value of M isn’t optimal yet.

4.4 Effect of adaptive step size

(Udell et al, 2016) suggests a more nuanced rule for selecting step sizes that allows for different step
sizes per row/column. Every time we update a row or column, we check if the objective function
(cost) increased or decreased. If the cost decreased, we are moving in the right direction, so we can
increase the step size (the paper recommends by 5%). However, if the cost increased, we jumped
too far, so we should decrease the step size for this row/column (the paper recommends by 30%).

We implemented this modification for SGD and SVRG. As shown in Figures 7-8, using this adaptive
method yields faster convergence to a better cost-function value (for both SGD and SVRG) than
sticking with a fixed step size throughout. This makes sense because the approach automatically
adjusts and customizes step sizes for each row/column, instead of imposing the same step size on
everything. This optimization was thus used in the above comparison of methods.

5 Applications: Dimensionality reduction

To test how using scalable optimization routines affects the downstream unsupervised learning meth-
ods, we look at the specific example of dimensionality reduction. The dimensionality reduction
method as described in [11] assumes makes explicity use of the estimated mean matrix M and a
convex weight matrix w. This is done by first calculating the distances between the means as fol-
lows:

[D]ij = d(Mi,Mj)

6



Figure 7: SGD step size comparison (1000 x 1000) Figure 8: SVRG step size comparison (100 x 1000)

(a)

(b) (c) (d)

Figure 9: a) Illustration of the dimensionality reduction using Sampled Matrix Factorization. b)
True low dimensional manifold (pre-sampling). c) Low dimensional visualization inferred using
NoLips algorithm. d) Low dimensional visualization inferred using SGD.

Multi-dimensional Scaling (MDS) [9] is then used to convert the high dimensional means to the
desired lower dimension while preserving the distances between the points. Since, the number of
cell type is a lot smaller than the number of cells, this leads to a more faithful representation of the
underlying manifold. The lower dimensional representation of all cells XLD is then obtained as
follows:

XLD = MLD × w

The outline of this method is seen in Figure 9 a. This method of dimensionality reduction forces
the relative positions of the points to be the same as that of the high dimension and has been used
in [11] to obtain efficient visualization of heterogeneous biological samples and lineage estimation.
Here we focus on the comparison of performing this method on an online and batch setting.

To perform the previously described test, we use the tree structured synthetic dataset that was used
in [11]. This dataset comprises of high dimensional data (1000 genes and 300 cells), which has an
underlying tree structured manifold as seen in Figure 9 c. This ‘true transcriptomic state’ data is
then sampled using a Poisson distribution to obtain the observed data. We then perform sampled
matrix factorization with k = 3 to estimate M and w. These are then used to perform dimensionality

7



reduction to visualize the cells in 2 dimensions. We perform this using the NoLips algorithm in the
batch setting and SGD in the online setting (with η = 10−5). We see that while the dimensionality
reduction using NoLips leads to a visualization which is clearly similar to the underlying true mani-
fold structure (albeit more noisy), that obtained using SGD is more noisy but the manifold structure
is still somewhat discernable. Hence, there still needs to be more work done on selecting appropriate
learning rates for the online setting to improve the run time and the final cost function value, which
can lead to similar (or better) performances in downstream learning tasks.

6 Conclusion

In this work we have explored different online optimization schemes to perform Sampled Matrix
Factorization and benchmarked the results against ’batch’ based approaches. We demonstrate on
several synthetic datasets that it is possible to converge to better cost function values using online
methods, with fewer passes through the datasets. Such methods do take slightly longer per iteration
because of the fixed costs of for loops, but they have the advantage of not needing to keep large
amounts of data in memory.

We then compared different number of passes through the dataset per iteration of online algorithms
and demonstrate that increasing number of passes per iteration leads to minor improvements in the fi-
nal cost function value. We also compare the effect of adaptive step size selection on different online
methods. We demonstrate that this can be largely beneficial and can lead to dramatic improvements
in both convergence rates and final cost function values.

Finally, we demonstrate the usability of these algorithms on a downstream learning problem, namely
dimensionality reduction. We demonstrate that although batch methods currently outperform the
online approaches, they are still able to estimate the underlying manifold structure of the data from
noisy sampled observed data. Future work will be aimed at developing automating the selection
of learning rates for various datasets and exploring custom online methods suited for this class of
problems.

References

[1] S. Anders and W. Huber. Differential expression analysis for sequence count data. Genome
biology, 11(10):1, 2010.

[2] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond lipschitz gradient con-
tinuity: first-order methods revisited and applications. Mathematics of Operations Research,
2016.

[3] C. R. Blyth. On simpson’s paradox and the sure-thing principle. Journal of the American
Statistical Association, 67(338):364–366, 1972.

[4] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] C. Dyer. Notes on adagrad. School of Computer Science, Carnegie Mellon University, 5000.

[6] D. Grün and A. van Oudenaarden. Design and analysis of single-cell sequencing experiments.
Cell, 163(4):799–810, 2015.

[7] N. K. Hanchate, K. Kondoh, Z. Lu, D. Kuang, X. Ye, X. Qiu, L. Pachter, C. Trapnell, and L. B.
Buck. Single-cell transcriptomics reveals receptor transformations during olfactory neurogen-
esis. Science, 350(6265):1251–1255, 2015.

[8] A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D. A. Weitz,
and M. W. Kirschner. Droplet barcoding for single-cell transcriptomics applied to embryonic
stem cells. Cell, 161(5):1187–1201, 2015.

[9] J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29(2):115–129, 1964.

[10] E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A. R. Bialas,
N. Kamitaki, E. M. Martersteck, et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell, 161(5):1202–1214, 2015.

8



[11] S. Mukherjee, Y. Zhang, S. Kannan, and G. Seelig. Prior knowledge and sampling model
informed learning with single cell rna-seq data. bioRxiv, page 142398, 2017.

[12] E. Pierson and C. Yau. Zifa: Dimensionality reduction for zero-inflated single-cell gene ex-
pression analysis. Genome biology, 16(1):1, 2015.

[13] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for
nonconvex optimization. arXiv preprint arXiv:1603.06160, 2016.

[14] C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J.
Livak, T. S. Mikkelsen, and J. L. Rinn. The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nature biotechnology, 32(4):381–386,
2014.

[15] A. Zeisel, A. B. Muñoz-Manchado, S. Codeluppi, P. Lönnerberg, G. La Manno, A. Juréus,
S. Marques, H. Munguba, L. He, C. Betsholtz, et al. Cell types in the mouse cortex and
hippocampus revealed by single-cell rna-seq. Science, 347(6226):1138–1142, 2015.

9


	Introduction
	Sampled Matrix Factorization
	Optimization methods tested
	Results
	Convergence rate and run time comparison of different methods
	Discussion
	Effect of number of passes through dataset per iteration
	Effect of adaptive step size

	Applications: Dimensionality reduction
	Conclusion

