
Locality-Sensitive Hashing (Datar et al, 2004)
LSH aims to hash images into buckets such that similar images are likely to be in the
same bucket. We choose random hyperplanes, and assign each image point to 0 or
1 depending on which side of the plane it is on. We combine the classifications given
by each hyperplane to produce the hash, which is a binary string. Example below:

To increase the chance of finding similar images in the same hash bucket, we use
multiple hash tables that are each hashed differently. We concatenate all the hash
tables into as a database table:

 HashTable(hash_table_index, hash_key, image_id)

We add a clustered index on (hash_table_index, hash_key), so that querying for all
the images in a particular hash bucket in a particular hash table is efficient.

At retrieval time, for each hash function, we hash the query image, and add the
images which hashed to the same bucket to our candidate image list to compute
exact similarity. Since the image vectors were not uniformly distributed, some
buckets had far more images than others, which was challenging.

Storage and Retrieval of Robotic Laser Range Data in Database Systems
Joshua Fan1, Kaiyu Zheng1

1Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, USA
Joshua and Kaiyu contributed equally.

Background

We would like to store each image in a way that enables fast retrieval.
We follow the popular Bag-of-Visual-Words model, described in (Zhou,
2017), as the representation of an image, as illustrated below.

Based on the Bag-of-Visual-Words approach, we designed a database
schema with three tables: Vscan, Codebook, and VscanFeature. The
schema is described below:

 Vscan(id, filename, building, floor, seq, label)
 Codebook(code_num, ... 128 columns of DOUBLE PRECISION)
 VscanFeature(vscan_id, ... k columns of INT)

Image Storage

Retrieval Algorithms Efficiency Results

[1] Wengang Zhou, Houqiang Li, and Qi Tian. “Recent Advance in Content-based Image Retrieval:
A Literature Survey”. In: arXiv preprint arXiv:1706.06064 (2017).

[2] Andrew P. Berman and Linda G. Shapiro. “A Flexible Image Database System for
Content-Based Retrieval”. In: Computer Vision and Image Understanding ”75”.”1/2” (1999), pp. 175–195.

[3] Mayur Datar et al. “Locality-sensitive Hashing Scheme Based on P-stable Distributions”. In:
Proceedings of the Twentieth Annual Symposium on Computational Geometry. SCG ’04. Brooklyn, New
York, USA: ACM, 2004, pp. 253–262.

Brute force
Simply compute distances between the query image and every image in the
database (using some distance metric such as Euclidean distance), and return
images with the lowest distance.

Triangle inequality pruning (Berman, 1999)
This approach aims to eliminate images using the triangle inequality. Randomly
select a subset of images to be “keys”, and precompute the distances between
every key and each of the images in the database. (The distance metric can be
customized.) These distances are stored in a new table:

 Distances(image_id, key_id, distance)

Suppose I is a database image, Q is the query image, K1, K2, … Km are key
images (arbitrary fixed images), and d is a distance metric. This lower bound on
the distance d(I, Q) can be derived using the Triangle Inequality:

Dataset
Our entire dataset of virtual scans consists of 100 sequences in 3
buildings in different cities. Each sequence has between around 1500 to
3000 virtual scans. Our experiments are performed based on a subset
of the entire dataset (6 sequences from 2 buildings in 2 countries).

Note that for any key Ks and image I, the distance d(I, Ks) can be found in the table
“Distances”. So the only thing that has to be computed is d(Q, Ks), the distance
from the query image to each key. Then, you can simply use the lower bound as an
estimate of the true distance (FIDS), or eliminate images whose lower-bound
distances are above some threshold (FIDSThreshold).

Top-k Presence Accuracy by Distance Function (5K images in DB)

A laser range-finder, commonly equipped on mobile robots, is a sensor
that can detect surrounding obstacles. We have a dataset that consists
of “snapshots'' (200 x 200 images) of the laser range observations
centered at the robot (called “virtual scans”). The goal of our project is
to enable the storage of laser-range data in a database system, and the
retrieval of similar virtual scans to a given query. Our motivation is the
potential benefits in improving training semantic place classifiers in a
semi-supervised learning setting.

Our problem is essentially content-based image retrieval
for a particular type of images (virtual scans).

Each virtual scan is labeled
by one of 10 place categories
of the robot’s location.

Top left: large meeting room;
Top center: doorway;
Top right: corridor;
Bottom left: portion of floor plan
annotated by place categories.

Accuracy Results

References

co = cosine distance; eu = Euclidean distance; euc = Euclidean distance centered;
eus = Euclidean distance squared; ha = Hamming distance; l1 = L1 norm distance

Top-k Presence Accuracy by Scaling (Euclidean distance)

Retrieval Time by Scaling (Euclidean Distance)

Retrieval Time by Distance Function (5K images in DB)

Conclusion
- FIDS (approximate) is more efficient than brute force and just as accurate,

even though the distance is an estimation.
- Using exact distance isn’t always better than using estimation.

- LSH also runs faster than brute force, although there is high variability due to
imbalanced bucket sizes.

- Retrieval accuracy best achieved: 40% for; 75% for Top-5, and 80% for
Top-10. (it is 40%-55% for all three levels if consider majority.)

- Half of the unlabeled virtual scans can be labeled correctly, which shows
potential for pre-labeling unlabeled data to improve place classifier training in
semi-supervised setting.

We investigated, in the top-K retrieved images, whether there exists one
with the same label as query. In each trial, we averaged over 100 queries.

The feature table is constructed from Stockholm sequences, while query
images come from Freiburg sequences.

