
Locality-Sensitive Hashing (Datar et al, 2004)
LSH aims to hash images into buckets such that similar images are likely to be in the 
same bucket. We choose random hyperplanes, and assign each image point to 0 or 
1 depending on which side of the plane it is on. We combine the classifications given 
by each hyperplane to produce the hash, which is a binary string. Example below:

To increase the chance of finding similar images in the same hash bucket, we use 
multiple hash tables that are each hashed differently. We concatenate all the hash 
tables into as a database table:

    HashTable(hash_table_index, hash_key, image_id)

We add a clustered index on (hash_table_index, hash_key), so that querying for all 
the images in a particular hash bucket in a particular hash table is efficient.

At retrieval time, for each hash function, we hash the query image, and add the 
images which hashed to the same bucket to our candidate image list to compute 
exact similarity. Since the image vectors were not uniformly distributed, some 
buckets had far more images than others, which was challenging.
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Background

We would like to store each image in a way that enables fast retrieval.  
We follow the popular Bag-of-Visual-Words model, described in (Zhou, 
2017), as the representation of an image, as illustrated below.

Based on the Bag-of-Visual-Words approach, we designed a database 
schema with three tables: Vscan, Codebook, and VscanFeature. The 
schema is described below:

   Vscan(id, filename, building, floor, seq, label)
   Codebook(code_num, ... 128 columns of DOUBLE PRECISION)
   VscanFeature(vscan_id, ... k columns of INT)
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Brute force
Simply compute distances between the query image and every image in the 
database (using some distance metric such as Euclidean distance), and return 
images with the lowest distance.

Triangle inequality pruning (Berman, 1999)
This approach aims to eliminate images using the triangle inequality. Randomly 
select a subset of images to be “keys”, and precompute the distances between 
every key and each of the images in the database. (The distance metric can be 
customized.) These distances are stored in a new table:

    Distances(image_id, key_id, distance)

Suppose I is a database image, Q is the query image,  K1, K2, … Km are key 
images (arbitrary fixed images), and d is a distance metric. This lower bound on 
the distance d(I, Q) can be derived using the Triangle Inequality:

Dataset
Our entire dataset of virtual scans consists of 100 sequences in 3 
buildings in different cities. Each sequence has between around 1500 to 
3000 virtual scans. Our experiments are performed based on a subset 
of the entire dataset (6 sequences from 2 buildings in 2 countries).

Note that for any key Ks and image I, the distance d(I, Ks) can be found in the table 
“Distances”. So the only thing that has to be computed is d(Q, Ks), the distance 
from the query image to each key. Then, you can simply use the lower bound as an 
estimate of the true distance (FIDS), or eliminate images whose lower-bound 
distances are above some threshold (FIDSThreshold).

Top-k Presence Accuracy by Distance Function (5K images in DB)

A laser range-finder, commonly equipped on mobile robots, is a sensor 
that can detect surrounding obstacles. We have a dataset that consists 
of “snapshots'' (200 x 200 images) of the laser range observations 
centered at the robot (called “virtual scans”). The goal of our project is 
to enable the storage of laser-range data in a database system, and the 
retrieval of similar virtual scans to a given query. Our motivation is the 
potential benefits in improving training semantic place classifiers in a 
semi-supervised learning setting.

Our problem is essentially content-based image retrieval
for a particular type of images (virtual scans). 

Each virtual scan is labeled 
by one of 10 place categories 
of the robot’s location. 

Top left: large meeting room;
Top center: doorway;
Top right: corridor;
Bottom left: portion of floor plan 
annotated by place categories.

Accuracy Results

References

co = cosine distance; eu = Euclidean distance; euc = Euclidean distance centered;
eus = Euclidean distance squared; ha = Hamming distance; l1 = L1 norm distance

Top-k Presence Accuracy by Scaling (Euclidean distance)

Retrieval Time by Scaling (Euclidean Distance)

Retrieval Time by Distance Function (5K images in DB)

Conclusion
- FIDS (approximate) is more efficient than brute force and just as accurate, 

even though the distance is an estimation.
- Using exact distance isn’t always better than using estimation. 

- LSH also runs faster than brute force, although there is high variability due to 
imbalanced bucket sizes.

- Retrieval accuracy best achieved: 40% for; 75% for Top-5, and 80% for 
Top-10. (it is 40%-55% for all three levels if consider majority.)

- Half of the unlabeled virtual scans can be labeled correctly, which shows 
potential for pre-labeling unlabeled data to improve place classifier training in 
semi-supervised setting.

We investigated, in the top-K retrieved images, whether there exists one 
with the same label as query. In each trial, we averaged over 100 queries.

The feature table is constructed from Stockholm sequences, while query 
images come from Freiburg sequences.


